Test
FRI MARC 22
$3.4-3.6,4.1-4.2$ (6 Questions)
Bring: calculator music earplugs
Practice Questions on Webpage

Chapter 5: Orthogonality

5.1 Orthogonality

Definition: An orthogonal set is a set of two or more vectors such that any two of the vectors are orthogonal.

Example: Verify that $\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right\}$ is an orthogonal set.

$$
\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=0 \sim\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=0 r \cdot\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=0 .
$$

Definition: To normalize a vector means to find a unit vector in the same direction.
Example: Normalize $\vec{u}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.

Definition: An orthonormal set is an orthogonal set in which all vectors have length 1. For example, the following is an orthonormal set:
$\left\{\frac{1}{\sqrt{6}}\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], \frac{1}{\sqrt{3}}\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right\}$.

Fact: A set of n nonzero orthogonal vectors in \mathbb{R}^{n} forms a basis for \mathbb{R}^{n}.

Comment: This implies that a set of n nonzero orthonormal vectors in \mathbb{R}^{n} forms a basis for \mathbb{R}^{n}.

Example: Find an orthonormal basis $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ for \mathbb{R}^{3} such that: \vec{u}_{1} is parallel to $[2,0,1]$ and \vec{u}_{2} is parallel to $[1,3,-2]$.

$$
\text { Direction of } \begin{aligned}
\vec{u}_{3} & =[2,0,1] \times[1,3,-2] \\
& =[-3,5,6]
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right], \frac{1}{\sqrt{4}}\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right], \frac{1}{\sqrt{x_{0}}}\left[\begin{array}{c}
-3 \\
\text { is an o then wal }
\end{array}\right]\right\} \text { set. }
\end{aligned}
$$

Fact: Suppose $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is an orthogonal basis for \mathbb{R}^{n}.
For any vector \vec{w} in \mathbb{R}^{n} :

Example: Draw a sketch to show that $\vec{w} \neq \operatorname{proj}_{\vec{v}_{1}} \vec{w}+\operatorname{proj}_{\overrightarrow{v_{2}}} \vec{w}+\ldots+\operatorname{proj}_{\vec{v}_{n}} \vec{w}$ if $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is not orthogonal.

 linear combination of the basis vectors.

Definition: An orthogonal matrix Q is an $n \times n$ matrix whose columns form an orthonormat set For example, the following matrix is orthogonal:
$Q=\left(\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \\ 0\end{array}\right] \begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right]$

Fact: A square matrix Q is orthogonal if and only if $Q^{T} Q=I$.

Example: Verify that $Q^{T} Q=I$ for $Q=\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1\end{array}\right]$.

