Test FRI MAR 22 3.4-3.6, 4.1-4.2 (6 Questions) Bring: calculater music learplugs Practice Questions on Webpage

Chapter 5: Orthogonality

## 5.1 Orthogonality

**Definition:** An **orthogonal set** is a set of two or more vectors such that any two of the vectors are orthogonal.

 $\begin{bmatrix} 0 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ -1 \end{bmatrix} = 0$ 

**Example:** Verify that  $\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right\}$  is an orthogonal set.

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -1 \end{bmatrix} = 0 \qquad \begin{bmatrix} 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 0 \qquad \begin{bmatrix} 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 0 \qquad \begin{bmatrix} 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 0 \qquad \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 0 \qquad \begin{bmatrix} 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 0 \qquad \begin{bmatrix} 2 \\ 1 \end{bmatrix} =$$

**Definition:** To **normalize** a vector means to find a unit vector in the same direction.



**Definition:** An **orthonormal set** is an orthogonal set in which all vectors have length 1. For example, the following is an orthonormal set:

$$\left\{\frac{1}{\sqrt{6}} \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\-1\\1 \end{bmatrix}\right\}.$$

**Fact:** A set of *n* nonzero orthogonal vectors in  $\mathbb{R}^n$  forms a basis for  $\mathbb{R}^n$ .

**Comment:** This implies that a set of *n* nonzero orthonormal vectors in  $\mathbb{R}^n$  forms a basis for  $\mathbb{R}^n$ .

**Example:** Find an orthonormal basis  $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$  for  $\mathbb{R}^3$  such that:  $\vec{u}_1$  is parallel to [2, 0, 1] and  $\vec{u}_2$  is parallel to [1, 3, -2].

Direction of 
$$U_3 = [2,0,1] \times [1,3,-2]$$
  
= [-3,5,6]





**Fact:** Suppose  $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$  is an orthogonal basis for  $\mathbb{R}^n$ . For any vector  $\vec{w}$  in  $\mathbb{R}^n$ :

$$\vec{w} = \operatorname{proj}_{\vec{v}_1} \vec{w} + \operatorname{proj}_{\vec{v}_2} \vec{w} + \ldots + \operatorname{proj}_{\vec{v}_n} \vec{w}$$

$$\vec{W} = \rho \gamma \gamma \vec{v} \quad \vec{W} + \rho \gamma \gamma \vec{v} \quad \vec{W}$$

$$\vec{W} = \rho \gamma \gamma \vec{v} \quad \vec{W} + \rho \gamma \gamma \vec{v} \quad \vec{W}$$

**Example:** Draw a sketch to show that  $\vec{w} \neq \text{proj}_{\vec{v}_1}\vec{w} + \text{proj}_{\vec{v}_2}\vec{w} + \ldots + \text{proj}_{\vec{v}_n}\vec{w}$  if  $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$  is not orthogonal.

ίJ  $\frac{p(\sigma)_{V_{2}}}{V_{2}} = \frac{p(\sigma)_{V_{2}}}{V_{2}} = \frac{p(\sigma)_{V_{2}}}{V_{$ د\_ کیل Proji W

5.1 Orthogonality

**Example:**  $\mathcal{B} = \{ \begin{bmatrix} 1\\1\\4 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 2\\2\\-1 \end{bmatrix} \}$  is an orthogonal basis for  $\mathbb{R}^3$ . Write  $\vec{w} = \begin{bmatrix} 5\\0\\9 \end{bmatrix}$  as a linear combination of the basis vectors.

Orthogonal basis  

$$\overline{W} = Proj_{\overline{V_1}}\overline{W} + Proj_{\overline{V_2}}\overline{W} + Proj_{\overline{V_3}}\overline{W}$$

$$= \frac{\overline{V_1} \cdot \overline{W}}{\|\overline{V_1}\|^2}\overline{V_1} + \dots$$

$$= \frac{41}{18}\begin{bmatrix}\frac{1}{4}\\\frac{1}{4}\end{bmatrix} + \frac{5}{2}\begin{bmatrix}\frac{7}{2}\\0\end{bmatrix} + \frac{1}{9}\begin{bmatrix}\frac{7}{2}\\-1\end{bmatrix} - \frac{1}{18}\overline{V_1} + \frac{5}{2}\overline{V_2} + \frac{1}{9}\overline{V_3}$$
or  $\frac{41}{18}\overline{V_1} + \frac{5}{2}\overline{V_2} + \frac{1}{9}\overline{V_3}$ 

If the basis Weren't orthogonal:  
Let 
$$c_1v_1 + c_2v_2 + c_3v_3 = 4r$$
  
 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 

**Definition:** An orthogonal matrix Q is an  $n \times n$  matrix whose columns form an orthonormal set. For example, the following matrix is orthogonal:

**Fact:** A square matrix Q is orthogonal if and only if  $Q^T Q = I$ .

**Example:** Verify that 
$$Q^T Q = I$$
 for  $Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix}$ .