Fact: A is diagonalizable if and only if: geometric multiplicity=algebraic multiplicity for all eigenvalues of A.

Example: Diagonalize $A=\left[\begin{array}{ll}4 & 0 \\ 1 & 4\end{array}\right]$ (if possible).

$$
\text { char acteristc equation: } \left\lvert\, \begin{gathered}
|A-\lambda I|=0 \\
\left|\begin{array}{c}
4-\lambda \\
1 \\
14-\lambda
\end{array}\right|=0
\end{gathered}\right.
$$

$$
\begin{aligned}
& \text { algebraic multiplicity of } \lambda=4 \text { is } 2 \\
& \text { geometric } \\
& \text { geo.mult. of } \lambda=4<_{101} \text { alg. mut. of } \lambda=4
\end{aligned}
$$

Fact: Let n be a positive integer. If D is diagonal then D^{n} is diagonal, with n-th powers on the diagonal.

Example: Calculate $\left[\begin{array}{cc}-4 & 0 \\ 0 & 3\end{array}\right]^{2}$.
$\left.=\frac{-4}{-\frac{-4}{0}} \begin{array}{c}0 \\ -16\end{array}\right]\left[\begin{array}{c}-4 \\ 0\end{array}\right)\left(\begin{array}{l}0 \\ 3\end{array}\right]$
$=\left[\begin{array}{cc}16 & 0 \\ 0 & 9\end{array}\right]$
$=\left[\begin{array}{cc}(-4)^{2} & 0 \\ 0 & 3^{2}\end{array}\right]$

Fact: Let n be a positive integer. If $P^{-1} A P=D$ then $A^{n}=P D^{n} P^{-1}$.

Example: Prove the fact above.

Example: $P=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ diagonalizes A to produce $D=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$. Find A^{k}, where k is a positive integer.

$$
\begin{aligned}
P^{-1} A P & =D \\
A & =P D P^{-1} \\
A^{n} & =P D P^{-1} P D P^{-1} \ldots P D P^{-1} \\
& =P D^{n} P^{-1}
\end{aligned}
$$

p^{-1} :

$$
: \quad[
$$

$$
\begin{aligned}
& {[P \mid I] \sim[I \mid P-1]} \\
& P^{-1}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
3^{n} & 0 & 0 \\
0 & 3^{n} & 0 \\
0 & 0 & 4^{n}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
3^{n} & 0 & 4^{n} \\
0 & 3^{n} & 0 \\
0 & 0 & 4^{n}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
3^{n} & 0 & -3^{n}+4^{n} \\
0 & 3^{n} & 0 \\
0 & 0 & 4^{n}
\end{array}\right]
$$

Example: Application of A^{n} and eigenvectors. This example will not be tested.
Consider a company with 1000 machines.
a) Suppose a working machine has a 99% probability of working tomorrow. Suppose a broken machine has a 50% probability of being broken tomorrow. Write down the probability matrix, A.

$$
\text { WB }<- \text { today }
$$

tonarnow
b) Suppose all machines are working today. Write down the initial state vector, \vec{v}.

$$
\vec{V}=W\left[\begin{array}{c}
1000 \\
0
\end{array}\right]
$$

c) How many machines will be working or broken tomorrow?

$$
A \vec{v}=\left[\begin{array}{cc}
0.99 & 0.5 \\
0.01 & 0.5
\end{array}\right]\left[\begin{array}{c}
1000 \\
0
\end{array}\right]=\left[\begin{array}{c}
990 \\
10
\end{array}\right]
$$

d) How many machines will be working or broken two days from now?

$$
A^{2} \vec{v} \approx\left[\begin{array}{c}
985 \\
15
\end{array}\right]
$$

e) How many machines will be working or broken three days from now?
f) How many machines will be working or broken n days from now, where n is a non-negative integer?

$$
A_{i}^{n}, \lim _{h \rightarrow \infty} A^{n} v=\left[\begin{array}{c}
\frac{5000}{51} \\
\frac{1000}{51}
\end{array}\right] \approx\left[\begin{array}{l}
480 \\
20
\end{array}\right]
$$

g) What initial state vector \vec{v} would have $A \vec{v}=\vec{v}$? This is called the steady-state vector

