Fact: A is diagonalizable if and only if: geometric multiplicity=algebraic multiplicity for all eigenvalues of A.

Fact: Let *n* be a positive integer. If *D* is diagonal then D^n is diagonal, with *n*-th powers on the diagonal.

Fact: Let *n* be a positive integer. If $P^{-1}AP = D$ then $A^n = PD^nP^{-1}$.

Example: Prove the fact above.

Example: $P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ diagonalizes A to produce $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$. Find A^k , where kis a positive integer. P-'AP=D $A = PDP^{-1}$ $A^{n} = PDP^{-1}PDP^{-1}...PDP^{-1}$ $= P D^{n} P^{-1}$ $D^{n} = \begin{bmatrix} 3 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4^{n} \end{bmatrix}$ $P^{-1} : \begin{bmatrix} P \mid T \end{bmatrix} \longrightarrow \begin{bmatrix} T \mid P^{-1} \end{bmatrix}$ $P' = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$ $A^{n} = P D^{n} P^{-1}$ $= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 3^{h} & 0 & 0 \\ 0 & 3^{h} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 3^{\circ} 0 & 4^{\circ} \\ 0 & 3^{\circ} & 6 \\ 0 & 0 & 4^{\circ} \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 3^{\circ} & 0 & -3^{\circ} + 4^{\circ} \\ 0 & 3^{\circ} & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Example: Application of A^n and eigenvectors. This example will not be tested. Consider a company with 1000 machines.

a) Suppose a working machine has a 99% probability of working tomorrow. Suppose a broken machine has a 50% probability of being broken tomorrow. Write down the probability matrix, A.

$$A = W[0.99 \ 0.5] = U[0.01 \ 0.5]$$

b) Suppose all machines are working today. Write down the initial state vector, \vec{v} .

$$\mathcal{J} = \mathcal{B} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

c) How many machines will be working or broken tomorrow?

$$A \vec{v} = \begin{bmatrix} 0.99 & 0.5 \\ 0.01 & 0.5 \end{bmatrix} \begin{bmatrix} 1000 \\ 0 \end{bmatrix} = \begin{bmatrix} 990 \\ 10 \end{bmatrix}$$

d) How many machines will be working or broken two days from now?

$$A^2 \vec{v} \approx \begin{bmatrix} 985 \\ 15 \end{bmatrix}$$

e) How many machines will be working or broken three days from now?

$$A^{3}V \simeq \begin{bmatrix} 983\\ 17 \end{bmatrix}$$

f) How many machines will be working or broken n days from now, where n is a non-negative integer?

$$A \vec{v}$$
. $\lim_{h \to \infty} A \vec{v} = \left[\frac{3 \vec{v} \vec{v} \vec{v}}{5 \vec{v}} \right] \approx \begin{bmatrix} 7 \vec{v} \vec{v} \\ 7 \vec{v} \end{bmatrix}$

g) What initial state vector \vec{v} would have $A\vec{v} = \vec{v}$? This is called the **steady-state vector** because the state after one day is the same as the initial state.

F=eigenvector of A Gresponding to k=1 Any multiple of [so].