Definition: The characteristic equation of A is $|A-\lambda I|=0$.
The algebraic multiplicity of an eigenvalue λ_{i} is the exponent on $\left(\lambda_{i}-\lambda\right)$ in the characteristic equation.
or $\left(\lambda-\lambda_{i}\right)$
The geometric multiplicity of an eigenvalue is the number of basis vectors in the corresponding eigenspace.

Example: Let A have characteristic equation $(7-\lambda)^{3}(9-\lambda)^{2}=0$. A basis for E_{7} consists of one vector. A basis for E_{9} consists of two vectors. Find the eigenvalues of A and state their algebraic multiplicities and their geometric multiplicities.

Fact: For each eigenvalue:
$1 \leq$ geometric multiplicity \leq algebraic multiplicity

Comment: If a matrix has
(geometric multiplicity) $=$ (algebraic multiplicity) for all its eigenvalues then the matrix has a nice property.
We'll see the details in Section 4.4.

We'll look at five properties of eigenvalues.

Property 1: A is invertible if and only if 0 is not an eigenvalue of A.

Example: Prove Property 1.

0 is not
as

Property 2: If A is invertible and $A \vec{x}=\lambda \vec{x}$ then \vec{x} is an eigenvector of A^{-1} with eigenvalue $\frac{1}{\lambda}$.

Example: Prove Property 2.

$$
A_{\vec{x}}=\lambda \vec{x} \quad \text { and }
$$

Property 3: Let n be a non-negative integer. If $A \vec{x}=\lambda \vec{x}$ then $A^{n} \vec{x}=\lambda^{n} \vec{x}$.

Example: Prove Property 3.

Property 4: If $A \vec{x}=\lambda \vec{x}$ then \vec{x} is an eigenvector of $A+k I$ with eigenvalue $\lambda+k$.

Example: Prove Property 4.

$$
\begin{aligned}
&(A+k I) \vec{x}=A \vec{x}+k I \vec{x} \\
&=\lambda \vec{x}+k \vec{x} \\
&=(\lambda+k) \vec{x} \\
& \text { eigenvalue } \\
& \text { of } A+k I \quad \text { eiguvecko of } \\
& A+k I
\end{aligned}
$$

Property 5: Let n be a non-negative integer.
Suppose A has eigenvectors $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{m}$ corresponding to eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$. Then: $A^{n}\left(c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\ldots+c_{m} \vec{x}_{m}\right)=c_{1} \lambda_{1}^{n} \vec{x}_{1}+c_{2} \lambda_{2}^{n} \vec{x}_{2}+\ldots+c_{m} \lambda_{m}^{n} \vec{x}_{m}$.

Comment: This is a generalization of Property 3.
Note that the coefficients are preserved.

Example: Suppose A has:
eigenvalue $\lambda_{1}=-2$ corresponding to eigenvector $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and eigenvalue $\lambda_{2}=3$ corresponding to eigenvector $\vec{v}_{2}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$.
Calculate $A^{3}\left[\begin{array}{c}11 \\ 2\end{array}\right]$.

$$
\begin{aligned}
& \text { 1) Let } c_{1} \overrightarrow{v_{1}}+c_{2} \vec{v}_{2}=\left[\begin{array}{l}
11 \\
2
\end{array}\right] \\
& {\left[\begin{array}{ll|l}
c_{1} & c_{2} \\
1 & 2 & 11 \\
2 & -1 & 2
\end{array}\right]} \\
& \leadsto \rightarrow\left[\begin{array}{ll|l}
1 & 0 & 3 \\
0 & 1 & 4
\end{array}\right] \\
& c_{1}=3, \\
& \text { 2) }
\end{aligned} \begin{aligned}
& A_{2}^{3}\left[\begin{array}{l}
11 \\
2
\end{array}\right] \\
= & A^{3}\left(3 \vec{v}_{1}+4 \vec{v}_{2}\right) \\
= & c_{1} \lambda_{1}^{3} \vec{v}_{1}+c_{2} \lambda_{2}^{3} \vec{v}_{2} \\
= & 3(-8)\left[\begin{array}{l}
1 \\
2
\end{array}\right]+4(27)\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \\
= & -24\left[\begin{array}{l}
1 \\
2
\end{array}\right]+108\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \\
= & {\left[\begin{array}{l}
192 \\
-156
\end{array}\right] }
\end{aligned}
$$

Example: Suppose A has the eigenvalue 3 corresponding to the eigenvector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$. List one eigenvector and one eigenvalue for each of the following matrices: $A^{-1}, A^{4}, A+2 I$.

4.4 Diagonalization

Definition: An $n \times n$ matrix A is diagonalizable if there exist an invertible matrix P and a diagonal matrix D so that $P^{-1} A P=D$.

Fact: To find P we find a basis for each eigenspace of A. The basis vectors go into the columns of P. The matrix D has the eigenvalues on the diagonal, in the same order as P.

Example: Let $A=\left[\begin{array}{ccc}2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$. Find P and D that diagonalize A.

$$
\begin{gathered}
\text { Eigenvalues of } A: \lambda=2,3 \\
(A \text { is upper triangular) }
\end{gathered}
$$

$$
\begin{aligned}
& \left.x=\left[\begin{array}{l}
1 \\
x \\
0
\end{array}\right] t \quad \operatorname{sasis}_{0} t t_{2}=\left\{\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\rangle_{159} \\
& {\left[\begin{array}{ccc|c}
0 & 0 & -2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]} \\
& R_{3}+2 R_{2} \quad\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] \\
& \begin{array}{lll}
{\left[\begin{array}{lllll}
x_{0}^{0} & x_{1} & -2 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 8 \\
1
\end{array}\right]_{\text {REF }}} \\
x_{1}=t, & x_{2}=0, x_{3}=0
\end{array}
\end{aligned}
$$

Example Continued..
Eigerspale E_{3} :

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
A & -3 & I & 1 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-1 & 0 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
>u_{2} & x_{2} & 0 \\
0 & 0 & x_{3} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
& 1 & 0
\end{array}\right]_{\text {PREF }}} \\
& x_{2}=-1
\end{aligned} x_{3}=t .
$$

$$
x_{1}+2 x_{3}=0 \Rightarrow x_{1}=-2 t
$$

$$
\vec{x}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] s+\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right] t
$$

Basis for $\left.t_{3}=\left\{\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ 1\end{array}\right]\right\}$

$$
P=\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

basis vectors in Glumes

$$
D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

eigenvalues, in same oder as P
Check: $P^{-1} A P=D \vee{ }_{160}$ (P^{-1} is guararated to exist is p exists)

