Definition: The characteristic equation of A is $|A - \lambda I| = 0$. The algebraic multiplicity of an eigenvalue λ_i is the exponent on $(\lambda_i - \lambda)$ or $(\lambda - \lambda_i)$ in the characteristic equation.

The **geometric multiplicity** of an eigenvalue is the number of basis vectors in the corresponding eigenspace.

Example: Let A have characteristic equation $(7 - \lambda)^3 (9 - \lambda)^2 = 0$. A basis for E_7 consists of one vector. A basis for E_9 consists of two vectors. Find the eigenvalues of A and state their algebraic multiplicities and their geometric multiplicities.

Fact: For each eigenvalue: $1 \leq \text{geometric multiplicity} \leq \text{algebraic multiplicity}$

Comment: If a matrix has (geometric multiplicity) = (algebraic multiplicity) for all its eigenvalues then the matrix has a nice property. We'll see the details in Section 4.4. We'll look at five properties of eigenvalues.

Property 1: A is invertible if and only if 0 is not an eigenvalue of A.

Example: Prove Property 1.

A is invertible

$$\iff det A \neq 0$$

 $\iff det (A - 0T) \neq 0$
 $\iff 0$ is not an eigenvalue of A

Property 2: If A is invertible and $A\vec{x} = \lambda \vec{x}$ then \vec{x} is an eigenvector of A^{-1} with eigenvalue $\frac{1}{\lambda}$.

Example: Prove Property 3.

$$A^{h}\vec{x} = A^{h-1}(A\vec{x})$$

$$= A^{h-1}(A\vec{x})$$

$$= A^{h-1}(A\vec{x})$$

$$= \lambda A^{h-1}\vec{x}$$
of A^{h}

$$= A^{h-1}\vec{x}$$

$$= \lambda A^{h-1}\vec{x}$$

$$= \lambda A^{h-1}\vec{x}$$

$$= A^{h-1}(A\vec{x})$$

$$= \lambda A^{h-1}\vec{x}$$

$$= A^{h-1}(A\vec{x})$$

$$= \lambda A^{h-1}(A\vec{x})$$

Property 4: If $A\vec{x} = \lambda \vec{x}$ then \vec{x} is an eigenvector of A + kI with eigenvalue $\lambda + k$.

Example: Prove Property 4.

Property 5: Let n be a non-negative integer.

Suppose A has eigenvectors $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_m$ corresponding to eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_m$. Then: $A^n(c_1\vec{x}_1 + c_2\vec{x}_2 + \ldots + c_m\vec{x}_m) = c_1\lambda_1^n\vec{x}_1 + c_2\lambda_2^n\vec{x}_2 + \ldots + c_m\lambda_m^n\vec{x}_m$.

Comment: This is a generalization of Property 3. Note that the coefficients are preserved.

Example: Suppose *A* has: eigenvalue $\lambda_1 = -2$ corresponding to eigenvector $\vec{v}_1 = \begin{vmatrix} 1 \\ 2 \end{vmatrix}$ and eigenvalue $\lambda_2 = 3$ corresponding to eigenvector $\vec{v}_2 = \begin{vmatrix} 2 \\ -1 \end{vmatrix}$. Calculate $A^3 \begin{bmatrix} 11\\ 2 \end{bmatrix}$. 1) Let $C_1 V_1 + C_2 V_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} C_1 & C_2 \\ 1 & 2 \\ 2 & -1 & 2 \end{bmatrix}$ $\sim) \begin{bmatrix} 1 & 0 & | \\ 0 & 1 & | \\ 4 \end{bmatrix}$ $C_1 = 3$, $C_2 = 4$ A $\begin{bmatrix} II\\ Z \end{bmatrix}$ 2) $= A^{3} (3\vec{v}_{1} + 4\vec{v}_{2})$ $= C_1 \lambda_1^3 \vec{U}_1 + C_2 \lambda_2^3 \vec{V}_2$ = 3(-8)[2] + 4(27)[2] $= -24 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 108 \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ -142

Example: Suppose A has the eigenvalue 3 corresponding to the eigenvector $\begin{bmatrix} 2\\1 \end{bmatrix}$. List one eigenvector and one eigenvalue for each of the following matrices: $A^{-1}, A^4, A + 2I$.

(Properties 2-4) Matrix Ege 59-6 Nector AtzI =5

4.4 Diagonalization

Definition: An $n \times n$ matrix A is **diagonalizable** if there exist an invertible matrix P and a diagonal matrix D so that $P^{-1}AP = D$.

Fact: To find P we find a basis for each eigenspace of A. The basis vectors go into the columns of P. The matrix D has the eigenvalues on the diagonal, in the same order as P.

Example: Let
$$A = \begin{bmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
. Find P and D that diagonalize A .
Eigenvalues of $A = \lambda = Z_1 3$
(A is upper triangular)
Eigenspace E_2 : $\begin{bmatrix} A - \lambda I \end{bmatrix} \begin{bmatrix} \tau \\ 0 \end{bmatrix} \begin{bmatrix} A - 2I \end{bmatrix} \begin{bmatrix} \tau \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 &$

Example Continued...
Eigenspace E3:
$$[A-3I \ [o]]$$

 $\begin{bmatrix} 0 & 0 & 0 & | 0 \\ 0 & 0 & | 0$

 $\left(\right)$