Test 3 FRIMAR ZZ 3.4-3.6,4.1-4.2 (6 Questions) Bring calculator Bring music learplugs Practice Problems on website

Fact: Cramer's Rule Let A be an $n \times n$ matrix. When det $A \neq 0$, the system $A\vec{x} = \vec{b}$ has a unique solution: i-th variable= $\frac{|A_i|}{|A|}$ where $A_i = A$ with the i-th column replaced by \vec{b} .

Example: Solve using Cramer's Rule:

$A = \begin{bmatrix} 2 & 3 & 2 \\ 3 & 0 & 5 \\ 4 & (& (&) \end{bmatrix} \qquad \begin{array}{c} 2x + 3y + 2z & = & -11 \\ 3x & +5z & = & 23 \\ 4x + y + z & = & 1 \end{array} \qquad \begin{array}{c} A_2 = \begin{bmatrix} 2 & -11 & 2 \\ 3 & 23 & 5 \\ 4 & 1 & 1 \\ \end{array} \right)$
A =47
$ A_2 = -329$
$ A_1 = \begin{vmatrix} -11 & 3 & 2 \\ 23 & 0 & 5 \\ 1 & 1 & 1 \end{vmatrix} expand along zh Glumn $
$= -3 \begin{vmatrix} 23 & 5 \\ 1 & 1 \end{vmatrix} - 1 \begin{vmatrix} -1/2 \\ 23 & 5 \end{vmatrix}$
= -3(18) - 1(-101) = 47
$ A_3 = \begin{bmatrix} 2 & 3 & -11 \\ 3 & 0 & 23 \\ 4 & 1 & 1 \end{bmatrix}$ expand along 2 nd Glumn
3 3 23 - (2 - 1)
$= -3(-89) - 1(79)$ $\chi = \frac{ A_1 }{ A_1 } = 1$ $\chi = \frac{ A_1 }{ A_1 } = 1$
$= -3(-89) - 1(79)$ $= (88)$ 146 $\begin{bmatrix} 1 & 1 & -1 & -7 \\ \hline I & AI & -7 \\ \hline I & A$
$z = \frac{1}{ A }$

Definition: A cofactor is the signed determinant in the cofactor expansion that's associated with a matrix entry. It's written C_{ij} .

The sign is given by the checkerboard pattern: $\begin{bmatrix} + & - & + & \dots \\ - & + & - & \dots \\ \dots & \dots & \dots \end{bmatrix}$.

Example: Let
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 5 \end{bmatrix}$$
.
Calculate the cofactors C_{11}, C_{12} and C_{32} .
 $C_{11} = + \begin{vmatrix} 0 & 3 \\ 1 & 5 \end{vmatrix} = + (-3) = -3$
 $C_{12} = - \begin{vmatrix} 1 & 3 \\ 1 & 5 \end{vmatrix} = - (2) = -2$
 $C_{32} = - \begin{vmatrix} 1 & 3 \\ 1 & 5 \end{vmatrix} = - (2) = -2$

Definition: The **cofactor matrix** is the matrix whose entries are the cofactors of *A*.

Example: Find the cofactor matrix for
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 5 \end{bmatrix}$$
.
Cofactor Matrix =
$$\begin{bmatrix} -3 & -2 & 1 \\ 11 & 4 & -3 \\ -6 & -2 & 2 \end{bmatrix}$$

Definition: The **adjoint of** A is the transpose of the cofactor matrix. It's written adj(A).

Fact: For an $n \times n$ matrix with $|A| \neq 0$: $A^{-1} = \frac{1}{|A|} \operatorname{adj}(A).$

Example: Let
$$A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 1 & 2 \\ 3 & -3 & 4 \end{bmatrix}$$
. Find A^{-1} using the adjoint formula.
Cofa (Sor Matrix = $\begin{bmatrix} 10 & -2 & -9 \\ -4 & 2 & 12 \\ 2 & 0 & -2 \end{bmatrix}$
adj $(A) = \begin{bmatrix} 10 & -[4 & 2] \\ -2 & 2 & 0 \\ -9 & (2 & -2) \end{bmatrix}$
 $|A| = 2 \begin{vmatrix} 1 & 2 \\ -3 & 4 \end{vmatrix} - 2 \begin{vmatrix} 2 & 2 \\ -3 & 4 \end{vmatrix} + 2 \begin{vmatrix} 2 & 1 \\ 3 & -3 \end{vmatrix}$
 $(expand along 1st row)$
 $= 2(10) - 2(2) + 2(-9)$
 $= -2$
 $A^{-1} = \frac{1}{|A|} adj(A)$
 $= -\frac{1}{2} adj(A)$
 $= -\frac{1}{2} adj(A)$
 $= -\frac{1}{2} adj(A)$

148

Example: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Find A^{-1} using the adjoint formula. Cofactor Matrix = $\begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$ $ad_{j}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ |A| = ad - bc $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

4.3 Eigenvalues and Eigenvectors, $n \times n$ Matrices

Example: Find all the eigenvalues of $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & -4 & 3 \\ 0 & 0 & 7 \end{bmatrix}$.

Solve,
$$|A - \lambda I| = 0$$

 $\begin{vmatrix} 1 - \lambda & 1 & 2 \\ 0 & -4 - \lambda & 3 \\ 0 & 0 & 7 - \lambda \end{vmatrix} = 0$
 $(1 - \lambda)(-4 - \lambda)(7 - \lambda) = 0$
performs the matrix is upper triangular
 $\lambda = 1, -4, 7$

Fact: The eigenvalues of an upper triangular, lower triangular or diagonal matrix are the diagonal entries.

Integer Roots Theorem

If a polynomial has integer coefficients and the leading coefficient is 1 then any integer roots divide the constant.

Example: Find all the eigenvalues of $A = \begin{bmatrix} 3 & -1 & 1 \\ 7 & -5 & 1 \\ 6 & 6 & 2 \end{bmatrix}$. Solve [A-XI] = 0 $\begin{vmatrix} 3-A & -1 & 1 \\ 7 & -5-A & 1 \\ 6 & -6 & 7-A \end{vmatrix} = 0$ expand along 1st row? $(3-\lambda) \begin{vmatrix} -5-\lambda & 1 \\ -6 & 2-\lambda \end{vmatrix} + \begin{vmatrix} 7 & 1 \\ 6 & 2-\lambda \end{vmatrix} + \begin{vmatrix} 7 & -5-\lambda \\ 6 & -6 \end{vmatrix} = 0$ $(3-\lambda)[(-5-\lambda)(2-\lambda)+6] + [7(2-\lambda)-6]$ $+ [-42 - 6(-5 - \lambda)] =$ $(3-\lambda)[\lambda^{2}+3\lambda-4]+[8-7\lambda]$ + $[-12+6\lambda] =$

Example Continued...

$$3\lambda^{2} + 9\lambda - 12$$

$$-\lambda^{3} - 3\lambda^{2} + 4\lambda$$

$$-7\lambda + 8$$

$$4 - 6\lambda - 12$$

$$-\lambda^{3} + 12\lambda - 16 = 0$$

$$\lambda^{3} - 12\lambda + 16 = 0$$
Possible Roots : ±1, ±2, ±4, ±8, ±16
$$\lambda = -1 : (-1)^{3} - 12(-1) + 16 = 0?$$
No
$$\lambda = -2 : (-2)^{3} - 12(-2) + 16 = 0?$$
No
$$\lambda = -2 : (-2)^{3} - 12(-2) + 16 = 0?$$
No
$$\lambda = -2 : (-2)^{3} - 12(-2) + 16 = 0?$$

$$\lambda = 2 : (-2)^{3} - 12(-2) + 16 = 0?$$

$$\lambda = 2 : (-2)^{3} - 12(-2) + 16 = 0?$$

$$\lambda = 2 : (-2)^{3} - 12(-2) + 16 = 0?$$

$$\lambda = 2 : (-2)^{3} - 12(-2) + 16 = 0?$$

$$\lambda = 2 : (-2)^{3} - 12(-2) + 16 = 0?$$

$$\lambda = 2 : (-2)^{3} - 12(-2) + 16 = 0?$$

$$\lambda = 2 : (-2)^{3} - 12(-2) + 16 = 0?$$

$$\lambda = 2 : (-2)^{3} - 12(-2) + 16 = 0?$$

$$\lambda = 2 : (-2)^{3} - 12(-2) + 16 = 0?$$

$$\lambda = 2 : (-2)^{3} - 12(-2) + 16 = 0?$$

$$\lambda = 2 : (-2)^{3} - 12(-2) + 16 = 0?$$

$$\lambda = 2 : (-2)^{3} - 12(-2) + 16 = 0?$$

$$\lambda = 2 : (-2)^{3} - 12(-2) + 16 = 0?$$

$$\lambda = 2 : (-2)^{3} - 12(-2) + 16 = 0?$$

$$\frac{\lambda^{2} + 2\lambda - 8}{(\lambda - 2) \int \lambda^{3} + 0 \lambda^{2} - 12\lambda + 16} - (\lambda^{3} - 2\lambda^{2}) \\
\frac{2\lambda^{2} - 12\lambda + 16}{-(2\lambda^{2} - 4\lambda)} \\
- 8\lambda + 16 \\
- (-8\lambda + 16)$$

$$(\lambda - 2)(\lambda^{2} + 2\lambda - 8) = 0$$

$$(\lambda - 2)(\lambda + 4)(\lambda - 2) = 0$$

$$(\lambda - 2)^{2}(\lambda + 4) = 0$$

$$\lambda = 2, -4$$

or
$$\lambda = 2, 2, -4$$