Fact: Let \vec{u} and \vec{v} be in \mathbb{R}^n . The angle θ between \vec{u} and \vec{v} is defined to be $0^\circ \le \theta \le 180^\circ$

Fact: For all \vec{u}, \vec{v} in \mathbb{R}^n : $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$

Comment: In \mathbb{R}^4 and higher dimensions, this is a definition of θ .

Comment: In the special case where \vec{u} and \vec{v} are unit vectors, $\vec{u} \cdot \vec{v}$ gives the value of $\cos \theta$.

Example: Find the angle between $\vec{u} = [1, -4]$ and $\vec{v} = [2, 3]$

$$\overline{U}, \overline{U} = \|\overline{U}\| \|\overline{V}\| GS\theta$$

$$-10 = \sqrt{17} \sqrt{13} GS\theta$$

$$\frac{-10}{\sqrt{17} \sqrt{13}} = GS\theta$$

$$\sqrt{17} \sqrt{13} = \theta$$

$$GS^{-1}\left(\frac{-10}{\sqrt{17} \sqrt{13}}\right) = \theta$$

$$G \approx |32^{\circ}|$$

Example: If $0^{\circ} \le \theta < 90^{\circ}$, what is the sign of $\vec{u} \cdot \vec{v}$? What if $\theta = 90^{\circ}$? What if $90^{\circ} < \theta \le 180^{\circ}$?

Definition: Vectors \vec{u} and \vec{v} are **orthogonal** if $\vec{u} \cdot \vec{v} = 0$.

Comment: The following statements are equivalent in 2D and 3D: Vectors \vec{u} and \vec{v} are perpendicular (geometry language) Vectors \vec{u} and \vec{v} are orthogonal (algebra language)

Comment: In higher dimensions it's more appropriate to use the word **orthogonal** rather than perpendicular.

Definition: The **projection** of \vec{v} onto \vec{u} is written $\text{proj}_{\vec{u}}\vec{v}$. This could be read as the projection onto \vec{u} of \vec{v} .

Example: Let's draw a few instances of $\text{proj}_{\vec{u}}\vec{v}$

Fact: proj $_{\vec{u}}\vec{v} = \frac{\vec{u}\cdot\vec{v}}{||\vec{u}||^2}\vec{u}$

Example: Find $\operatorname{proj}_{\vec{u}}\vec{v}$ for $\vec{u} = [1, 2]$ and $\vec{v} = [1, 3]$

$$Proj_{\vec{u}}\vec{v} = \vec{u}\cdot\vec{v} \quad \vec{u}$$

$$= \frac{7}{5}\vec{u} \quad \text{or} \quad \frac{7}{5}\left[1,2\right]$$

Fact: Given vectors \vec{u}, \vec{v} in \mathbb{R}^n , there is exactly one way to decompose \vec{v} into two vectors that are parallel and perpendicular to \vec{u} .

$$a = proj_{u} \vec{v}$$

$$= \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^{2}} \vec{u}$$

$$= \frac{6}{2} [1,1]$$

$$= 3 [1,1]$$

$$= [3,3]$$

$$\vec{v} = \vec{a} + \vec{b}$$

$$\vec{b} = \vec{v} - \vec{a}$$

$$= [4,2] - [3,3]$$

$$= [1,-1]$$