Fact: Let \vec{u} and \vec{v} be in \mathbb{R}^{n}. The angle θ between \vec{u} and \vec{v} is defined to be $0^{\circ} \leq \theta \leq 180^{\circ}$

Fact: For all \vec{u}, \vec{v} in $\mathbb{R}^{n}: \quad \vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$

Comment: In \mathbb{R}^{4} and higher dimensions, this is a definition of θ.

Comment: In the special case where \vec{u} and \vec{v} are unit vectors, $\vec{u} \cdot \vec{v}$ gives the value of $\cos \theta$.

Example: Find the angle between $\vec{u}=[1,-4]$ and $\vec{v}=[2,3]$

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta \\
&-10=\sqrt{17} \sqrt{13} \cos \theta \\
& \frac{-10}{\sqrt{17} \sqrt{13}}=\cos \theta \\
& \cos ^{-1}\left(\frac{-10}{\sqrt{17} \sqrt{13}}\right)=\theta \\
& \theta \approx 132^{\circ}
\end{aligned}
$$

Example: If $0^{\circ} \leq \theta<90^{\circ}$, what is the sign of $\vec{u} \cdot \vec{v}$?
What if $\theta=90^{\circ}$?
What if $90^{\circ}<\theta \leq 180^{\circ}$?

Definition: Vectors \vec{u} and \vec{v} are orthogonal if $\vec{u} \cdot \vec{v}=0$.

Comment: The following statements are equivalent in 2D and 3D:
Vectors \vec{u} and \vec{v} are perpendicular (geometry language)
Vectors \vec{u} and \vec{v} are orthogonal (algebra language)
Comment: In higher dimensions it's more appropriate to use the word orthogonal rather than perpendicular.

Definition: The projection of \vec{v} onto \vec{u} is written $\operatorname{proj}_{\vec{u}} \vec{v}$. This could be read as the projection onto \vec{u} of \vec{v}.

Example: Let's draw a few instances of $\operatorname{proj}_{\vec{u}} \vec{v}$

C)

Fact: $\operatorname{proj}_{\vec{u}} \vec{v}=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^{2}} \vec{u}$
Example: Find $\operatorname{proj}_{\vec{u}} \vec{v}$ for $\vec{u}=[1,2]$ and $\vec{v}=[1,3]$

$$
\begin{aligned}
& p r o j \vec{u}=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^{2}} \\
&=\frac{7}{5} u \quad \text { or } \\
&=\frac{7}{5}[1,2]
\end{aligned}
$$

Fact: Given vectors \vec{u}, \vec{v} in \mathbb{R}^{n}, there is exactly one way to decompose \vec{v} into two vectors that are parallel and perpendicular to \vec{u}.

Example: Let $\vec{u}=[1,1]$ and $\vec{v}=[4,2]$. Find vectors \vec{a} and \vec{b} so that $\vec{v}=\vec{a}+\vec{b}, \vec{a}$ is parallel to \vec{u}, and \vec{b} is perpendicular to \vec{u}.

$$
\begin{aligned}
\vec{a} & =\operatorname{proj} \vec{u} \vec{v} \\
& =\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^{2}} \vec{u} \\
& =\frac{6}{2}[1,1] \\
& =3[1,1] \\
& =[3,3] \\
\vec{v} & =\vec{a}+\vec{b} \\
\vec{b} & =\vec{v}-\vec{a} \\
& =[4,2]-[3,3] \\
& =[1,-1]
\end{aligned}
$$

