Do Suggested HW for Section 1.1 List of HW Problems and Full Solutions WWW. leakhoward. Gm Problems on D2L Vectors are sometimes Written in bold font. b is a vector b is a vector b is a real number

Fact: Order doesn't matter when adding vectors. For any vectors \vec{u}, \vec{v} and \vec{w} : $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ $(\vec{u} + \vec{v}) + \vec{w} = (\vec{w} + \vec{u}) + \vec{v}$

Example: Let \vec{u}, \vec{v} and \vec{w} be positioned tail to tail to tail. Show geometrically that $(\vec{u} + \vec{v}) + \vec{w} = (\vec{w} + \vec{u}) + \vec{v}$

Fact: The above example illustrates that we can write $\vec{u} + \vec{v} + \vec{w}$ without any bracketing.

Definition: Consider the expression: \vec{v} in \mathbb{R}^n . This means that \vec{v} has *n* components, and each component is a real number.

Definition: The **zero vector** is written $\vec{0}$. Each of its components is zero. The zero vector is useful for algebra.

Example: Write the zero vector in \mathbb{R}^2 and \mathbb{R}^3 .

$$\begin{bmatrix} n & \mathbb{R}^{2} : & \overline{0} = [0, 0] \\ n & \mathbb{R}^{3} : & \overline{0} = [0, 0, 0] \\ \text{Example: Let } \vec{u} \text{ be in } \mathbb{R}^{2}. \text{ Show (prove) that } \vec{u} + (-\vec{u}) = \vec{0}. \\ \text{Let } \quad \vec{u} = [\mathcal{U}_{1}, \mathcal{U}_{2}] \\ \text{Let } \quad \vec{u} = [\mathcal{U}_{1}, \mathcal{U}_{2}] + [-\mathcal{U}_{1}, -\mathcal{U}_{2}] \\ \text{Let } \quad (-\vec{u}) = [\mathcal{U}_{1}, \mathcal{U}_{2}] + [-\mathcal{U}_{1}, -\mathcal{U}_{2}] \\ = [0, 0] \\ = \vec{0}$$

Example: Solve for \vec{x} given that $7\vec{x} - \vec{a} = 3(\vec{a} + 4\vec{x})$.

$$7x - a = 3a + 12x$$

 $-5x - a = 3a$
 $-5x = 4a$
 $x = -\frac{4}{5}a$

Definition: Consider the statement: \vec{w} is a **linear combination** of $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} 0\\2 \end{bmatrix}$ with coefficients -3 and 2. This means that $\vec{w} = -3\begin{bmatrix} 1\\1 \end{bmatrix} + 2\begin{bmatrix} 0\\2 \end{bmatrix}$.

Example: Let $\vec{w} = -3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 2 \end{bmatrix}$. a) Find \vec{w} algebraically.

$$\widetilde{W} = \begin{bmatrix} -3\\ -3 \end{bmatrix} + \begin{bmatrix} 0\\ 4 \end{bmatrix}$$
$$= \begin{bmatrix} -3\\ 1 \end{bmatrix}$$

b) Find \vec{w} geometrically.

Example: a) Let \vec{u} be a vector of length 5, in standard position, rotated 30° from the positive x-axis. Find \vec{u} algebraically.

b) Let \vec{v} be a vector of length 7, in standard position, rotated 135° from the positive x-axis. Find \vec{v} algebraically.

Comment: Vectors are often used to represent velocity, acceleration or forces. The vector's direction represents the direction of the velocity/acceleration/force. The vector's length represents the magnitude of the velocity/acceleration/force.

1.2 Length and Angle

Example: Let $\vec{u} = [1, 4, 2, -9]$ and $\vec{v} = [2, 3, -2, -1]$. Calculate the dot product $\vec{u} \cdot \vec{v}$

$$\vec{u} \cdot \vec{v} = 1(2) + 4(3) + 2(-2) + (-9)(-1)$$

= 19

Example: Calculate: a) $[1,5] \cdot [2,-3]$ = |(2) + 5(-3)= -|3

b) [1,5] · [2,-3,0] Mdefined

c)
$$[u_1, u_2] \cdot [u_1, u_2]$$

= $U_1(U_1) + U_2(U_2)$
= $U_1^2 + U_2^2$

Fact: Three Properties of the Dot Product Let \vec{u}, \vec{v} be in \mathbb{R}^n . Then: 1) $\vec{u} \cdot \vec{u} \ge 0$ 2) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ 3) $\vec{u} \cdot \vec{u} = 0$ if and only if $\vec{u} = \vec{0}$

Example: Break Property 3 into two statements, and decide which is more obvious.