Do Suggested HW fer Section 1.1
List of HW Problems and Full Solutions
wWW. leahhoward. 6 m
Problems on D2L
Veuloss are sometimes written in bold font.
\boldsymbol{b} is a vector
\vec{b} is a vector
b is a real number

Fact: Order doesn't matter when adding vectors. For any vectors \vec{u}, \vec{v} and \vec{w} :
$\vec{u}+\vec{v}=\vec{v}+\vec{u}$
$(\vec{u}+\vec{v})+\vec{w}=(\vec{w}+\vec{u})+\vec{v}$
Example: Let \vec{u}, \vec{v} and \vec{w} be positioned tail to tail to tail. Show geometrically that $(\vec{u}+\vec{v})+\vec{w}=(\vec{w}+\vec{u})+\vec{v}$

Fact: The above example illustrates that we can write $\vec{u}+\vec{v}+\vec{w}$ without any bracketing.

Definition: Consider the expression: \vec{v} in \mathbb{R}^{n}. This means that \vec{v} has n components, and each component is a real number.

Example: Draw $\vec{v}=[1,3,2]$ in \mathbb{R}^{3}.

Definition: The zero vector is written $\overrightarrow{0}$. Each of its components is zero. The zero vector is useful for algebra.

Example: Write the zero vector in \mathbb{R}^{2} and \mathbb{R}^{3}.

$$
\begin{array}{ll}
\ln \mathbb{R}^{2}: & \overrightarrow{0}=[0,0] \\
\ln \mathbb{R}^{3}: & \overrightarrow{0}=[0,0,0]
\end{array}
$$

Example: Let \vec{u} be in \mathbb{R}^{2}. Show (prove) that $\vec{u}+(-\vec{u})=\overrightarrow{0}$.

$$
\begin{aligned}
\text { Let } \vec{u} & =\left[u_{1}, u_{2}\right] \\
\vec{u}+(-\vec{u}) & =\left[u_{1}, u_{2}\right]+\left[-u_{1},-u_{2}\right] \\
& =[0,0] \\
& =\frac{?}{0}
\end{aligned}
$$

Example: Solve for \vec{x} given that $7 \vec{x}-\vec{a}=3(\vec{a}+4 \vec{x})$.

$$
\begin{aligned}
7 \vec{x}-\vec{a} & =3 \vec{a}+12 \vec{x} \\
-5 \vec{x}-\vec{a} & =3 \vec{a} \\
-5 \vec{x} & =4 \vec{a} \\
\vec{x} & =-\frac{4}{5} \vec{a}
\end{aligned}
$$

Definition: Consider the statement:
\vec{w} is a linear combination of $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 2\end{array}\right]$ with coefficients -3 and 2.
This means that $\vec{w}=-3\left[\begin{array}{l}1 \\ 1\end{array}\right]+2\left[\begin{array}{l}0 \\ 2\end{array}\right]$.
Example: Let $\vec{w}=-3\left[\begin{array}{l}1 \\ 1\end{array}\right]+2\left[\begin{array}{l}0 \\ 2\end{array}\right]$.
a) Find \vec{w} algebraically.

$$
\begin{aligned}
\bar{W} & =\left[\begin{array}{c}
-3 \\
-3
\end{array}\right]+\left[\begin{array}{l}
0 \\
4
\end{array}\right] \\
& =\left[\begin{array}{c}
-3 \\
1
\end{array}\right]
\end{aligned}
$$

b) Find \vec{w} geometrically.

Example: Write $\vec{w}=\left[\begin{array}{l}4 \\ 1\end{array}\right]$ as a linear combination of $\vec{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}0 \\ 2\end{array}\right]$ by graphing.

Think of \bar{u} and \bar{v} as the axes.

$$
\begin{aligned}
{\left[\begin{array}{c}
0 \\
-3
\end{array}\right] } & =k\left[\begin{array}{l}
0 \\
2
\end{array}\right] \\
-3 & =k(2) \\
k & =\frac{-3}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{w}=4 \vec{u}-\frac{3}{2} \vec{v} \\
& \bar{w}=4\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\frac{3}{2}\left[\begin{array}{l}
0 \\
2
\end{array}\right]
\end{aligned}
$$

Well do this algebraically in Ch 2.

$$
\begin{array}{r}
{\left[\begin{array}{l}
4 \\
1
\end{array}\right]=C_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2}\left[\begin{array}{l}
0 \\
2
\end{array}\right]} \\
\text { System of equations } \ldots .
\end{array}
$$

Example: a) Let \vec{u} be a vector of length 5, in standard position, rotated 30° from the positive x-axis. Find \vec{u} algebraically.

$$
\left.\frac{\frac{530^{\circ}}{\sqrt{7}}}{\frac{5}{2}} \frac{\frac{5 \sqrt{3}}{2}}{2}\right] \frac{5}{2}
$$

b) Let \vec{v} be a vector of length 7 , in standard position, rotated 135° from the positive x-axis. Find \vec{v} algebraically.

Comment: Vectors are often used to represent velocity, acceleration or forces. The vector's direction represents the direction of the velocity/acceleration/force. The vector's length represents the magnitude of the velocity/acceleration/force.

1.2 Length and Angle

Example: Let $\vec{u}=[1,4,2,-9]$ and $\vec{v}=[2,3,-2,-1]$. Calculate the dot product $\vec{u} \cdot \vec{v}$

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =1(2)+4(3)+2(-2)+(-9)(-1) \\
& =19
\end{aligned}
$$

Example: Calculate:
a) $[1,5] \cdot[2,-3]$
$=1(2)+5(-3)$
$=-13$
b) $[1,5] \cdot[2,-3,0]$
Mdefined
c) $\left[u_{1}, u_{2}\right] \cdot\left[u_{1}, u_{2}\right]$

$$
\begin{aligned}
& =u_{1}\left(u_{1}\right)+u_{2}\left(u_{2}\right) \\
& =u_{1}^{2}+u_{2}^{2}
\end{aligned}
$$

Fact: Three Properties of the Dot Product
Let \vec{u}, \vec{v} be in \mathbb{R}^{n}. Then:

1) $\vec{u} \cdot \vec{u} \geq 0$
2) $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$
3) $\vec{u} \cdot \vec{u}=0$ if and only if $\vec{u}=\overrightarrow{0}$

Example: Break Property 3 into two statements, and decide which is more obvious.

