4.1 Eigenvalues and Eigenvectors

Def
Let A be an $n \times n$ matrix.
If $A \vec{x}=\lambda \vec{x}$ for $\vec{x} \neq \overrightarrow{0}$ and for some number λ, then λ is an eigenvalue of A and \vec{x} " eigenvector of A.

Ex: Show that $\bar{x}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is an eigenvector of $A=\left[\begin{array}{cc}1 & -3 \\ 1 & 5\end{array}\right]$

$$
\begin{aligned}
A \vec{x} & =\left[\begin{array}{rr}
1 & -3 \\
1 & 5
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
4 \\
-4
\end{array}\right] \\
& =4\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =4 \vec{x}
\end{aligned}
$$

Terminology: \vec{x} is an eigenvector of A corresponding to eigenvalue $\lambda=4$

Note: $\quad A \overrightarrow{0}=\lambda \overrightarrow{0}$ is trivial $\overrightarrow{0}$ is not considued an eigenvector

Ex: Find all eigenvectors of $A=\left[\begin{array}{cc}3 & -2 \\ -3 & 4\end{array}\right]$ responding to $\lambda=6$
Wart $A \vec{x}=6 \vec{x}$

$$
\begin{gathered}
A \vec{x}=6 I \vec{x} \\
A \vec{x}-6 I \vec{x}=\overrightarrow{0} \\
(A-6 I) \vec{x}=\overrightarrow{0} \\
>A-6 I \mid \overrightarrow{0}] \\
A-6 I=\left[\begin{array}{cc}
3 & -2 \\
-3 & 4
\end{array}\right]-6\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
-3 & -2 \\
-3 & -2
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
-3 & -2 & 0 \\
-3 & -2 & 0
\end{array}\right]} \\
& \frac{R_{1}}{-3} \quad\left[\begin{array}{rr|r}
1 & \frac{2}{3} & 0 \\
-3 & -2 & 0
\end{array}\right] \\
& R_{2}+3 R_{1} \quad\left[\begin{array}{cc|c}
x_{1} & x_{2} & \\
0 & \frac{2}{3} & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { pREF } \\
& x_{1}+\frac{2}{3} x_{2}=0 \quad x_{1}=-\frac{2}{3} t \\
& \vec{x}=\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right] t \quad(t \neq 0) \\
& \text { or } \vec{x}=\left[\begin{array}{c}
-2 \\
3
\end{array}\right] t \quad(t \neq 0)
\end{aligned}
$$

Check:

$$
\begin{aligned}
A \vec{x} & =\left[\begin{array}{cc}
3 & -2 \\
-3 & 4
\end{array}\right]\left[\begin{array}{c}
-2 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
-12 \\
18
\end{array}\right] \\
& =6\left[\begin{array}{c}
-2 \\
3
\end{array}\right]
\end{aligned}
$$

Fact
To find eigenvectors of A corresponding to λ :

$$
\text { Solve }[A-\lambda I \mid \overrightarrow{0}]
$$

Def
The eigenspace E_{λ} is the set of all eigenvectors of A Gresponding to λ, plus the zero vector. It's a subspace of \mathbb{R}^{n}.

Ex: Find a basis for the eigenspace E_{3}
for $A=\left[\begin{array}{ccc}4 & 1 & -2 \\ -3 & 0 & 6 \\ 2 & 2 & -1\end{array}\right]$
Solve $[A-\lambda I \mid \overrightarrow{0}]$

$$
[A-3 I \mid \stackrel{\rightharpoonup}{0}]
$$

Subtract 3 from diagonal

$$
\left[\begin{array}{ccc|c}
1 & 1 & -2 & 0 \\
-3 & -3 & 6 & 0 \\
2 & 2 & -4 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& {[\begin{array}{c}
{\left[\begin{array}{ccc|c}
1 & x_{2} & x_{3} & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\uparrow & \uparrow
\end{array}\right] R R \in F} \\
x_{2}=1
\end{array} \underbrace{}_{3}=t} \\
& x_{1}+x_{2}-2 x_{3}=0 \\
& \text { genvecalos } \\
& \vec{x}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] s+\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] t \quad(\vec{x} \neq \overrightarrow{0})
\end{aligned}
$$

List of eigenvectors
Basis for $E_{3}=\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]\right\}$
E_{3}

Ex: Find a basis for E_{0} for $A=\left[\begin{array}{ccc}4 & 1 & -3 \\ 0 & 0 & 2 \\ 0 & 0 & -3\end{array}\right]$ Solve $[A-\lambda I \mid \overrightarrow{0}]$

$$
\begin{gathered}
{\left[\begin{array}{llll}
A & \mid & 0
\end{array}\right]} \\
{\left[\begin{array}{ccc|c}
4 & 1 & -3 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & -3 & 0
\end{array}\right]} \\
\leadsto\left[\begin{array}{lll|l}
1 & \frac{1}{4} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
x_{2}=t
\end{gathered}
$$

$$
\begin{gathered}
x_{2}=t \\
\vec{x}_{x}=\left[\begin{array}{c}
-1 / 4 \\
1 \\
0
\end{array}\right] t \quad(t \neq 0) \\
\text { Basis for } E_{0}=\left\{\left[\begin{array}{c}
-1 / 4 \\
1 \\
0
\end{array}\right]\right\} \\
\text { or }\left\{\left[\begin{array}{c}
-1 \\
4 \\
0
\end{array}\right]\right\}
\end{gathered}
$$

Applications
(1) Vibrations
eigenvalues = natural frequencies
eigenvectors $=$ shapes/directions of vibrations
(2) Facial Recognition (Image Processing)

$$
[\text { Image }] \rightarrow\left[\begin{array}{c}
018256 \\
\cdots
\end{array}\right]
$$

eigenvectors = "basic" faces
Goal: Express any face as a linear combination of basic faces

