3.6 Linear Transformations

Ex: Transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
Rotates each vector by 90° Gunterclockwise.

Notation:

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \\
& T\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
\end{aligned}
$$

Terminology: $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ is the image of $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ under T

Def
The matrix transformation T_{A} multiplies a vector on the left by A.

$$
T_{A}(\vec{v})=A \vec{v}
$$

Ex: a) $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ -1 & 1 & -3\end{array}\right]$
Find $T_{A}\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)$

$$
=A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
2 & 0 & 1 \\
-1 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
& =\left[\begin{array}{c}
2 x+z \\
-x+y-3 z
\end{array}\right]
\end{aligned}
$$

b) $T_{A}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}2 x+y \\ x-y \\ 3 x+3 y\end{array}\right]$

Find A

$$
\begin{aligned}
& {\left[\begin{array}{ll}
& \\
\hline y
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
& {\left[\begin{array}{rr}
2 & 1 \\
1 & -1 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=[2 x+y]}
\end{aligned}
$$

Def
A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if:

1) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for all \bar{u}, \vec{v} in \mathbb{R}^{n}
2) $T(C \vec{u})=c T(\vec{u})$ for all constants C

Ex: Show that $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}y \\ 1+x\end{array}\right]$ is not linear

- Show that I property fails
- Car use numbers

$$
\begin{aligned}
& T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
2
\end{array}\right] \\
& T\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
\end{aligned}
$$

$$
T\left[\begin{array}{l}
2 \\
0
\end{array}\right] \neq 2 T\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Ex: Confirm that T_{A} satisfies property 2) where $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 1\end{array}\right]$

$$
\begin{aligned}
T_{A}(c \vec{u}) & =\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c u_{1} \\
c u_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
c u_{1}+c u_{2} \\
c u_{1}+2 c u_{2} \\
c u_{1}+c u_{2}
\end{array}\right] \\
& =c\left[\begin{array}{l}
u_{1}+u_{2} \\
u_{1}+2 u_{2} \\
u_{1}+u_{2}
\end{array}\right] \\
& =c T_{A}(\vec{u})
\end{aligned}
$$

2 properties
FACT
T is a linear transformation if and only if T is a matrix transformation

$$
T_{A}^{1}
$$

- Tells us which transformations are linear

Def
The standard matrix for T is the matrix that perform T.
Notation: $[T]$

How to find $[T]$:

$$
\begin{aligned}
{[T]=} & {\left[\bigcap_{\uparrow} \bigcup_{\uparrow} \bigcap_{\uparrow}\right.} \\
& T\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] T\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] T\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

Works because T is linear

Ex: $\quad T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
Reflects a vector in the y-axis
a) Find $[T]$

$$
\left.\begin{array}{rl}
{[T]=} & {\left[\begin{array}{ll}
-1 \\
0
\end{array}\right)} \\
& \left.\begin{array}{l}
0 \\
1
\end{array}\right]
\end{array}\right]
$$

b) Find $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)$

$$
-\neg\lceil x\rceil
$$

- ر

$$
\begin{aligned}
& \cdots u= \\
&=[\tau]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
&= {\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] } \\
&=\left[\begin{array}{c}
-x \\
y
\end{array}\right]
\end{aligned}
$$

Ex: $\quad T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
Reflects a vector in $y=x$ Find $[\tau]$

$$
\begin{aligned}
& T {\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] } \\
& T\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& {[T]=} {\left[\begin{array}{ll}
0 \\
1 & 1 \\
0
\end{array}\right] } \\
& T\left[\begin{array}{l}
1 \\
0
\end{array}\right] T\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

