Test Friday 1.1-1.3, Cross Product, 2.1-2.2 (6 Questions) No Tormula Sheet Practice Problems Www.leahhoward.com

No office Hows Wed. Review Thursday

2.3 Span and Linear Independence

Ex: Find an equation for span ([;],[;])

 $\frac{\text{Vector for}}{\vec{x} = \vec{p} + \vec{s}\vec{u} + \vec{t}\vec{v}}$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + S \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix}$$

ALTERNATIVELY:

General form $\vec{n} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -3 \\ -5 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 4 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$

$$-3x - Sy + 3z = d$$
Sub (0,0,0): 0 = d
$$-3x - Sy + 3z = 0$$

Ex: a) Show that span ($\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$) = \mathbb{R}^2 Let $\begin{bmatrix} a \\ b \end{bmatrix}$ be any vector in \mathbb{R}^2 Show that $C_1[\begin{bmatrix} 1 \\ 3 \end{bmatrix} + C_2[\begin{bmatrix} 2 \\ 1 \end{bmatrix}] = \begin{bmatrix} a \\ b \end{bmatrix}$ has a solution C_1 , C_2

$$\begin{bmatrix} C_1 & C_2 \\ 1 & 2 & | a \\ 3 & 1 & | b \end{bmatrix}$$

System is solvable

b) Write [b] as a linear combination of [1] and [2].

let
$$C_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + C_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ b \end{bmatrix}$$

$$\vdots$$

$$\begin{bmatrix} C_1 & C_2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ b \end{bmatrix}$$

$$RREF$$

Def Goven $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$, Consider $C_1\vec{v}_1 + C_2\vec{v}_2 + ... + C_n\vec{v}_n = \vec{0}$

Only solution
is $C_1 = C_2 = \dots = C_n = 0$

Vectors are linearly independent $C_1 = C_2 = \dots = C_n = 0$ and
other solutions

Vectors are linearly dependent

Ex: a) $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 7 \end{bmatrix}$ are linearly dependent $\begin{bmatrix} 2 \\ 4 \end{bmatrix} + \begin{bmatrix} 2 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

b) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ are linearly dependent $\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

c) $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 7 \\ 7 \end{bmatrix}$ are $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ = $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Alternative terminology: { [0], [7]} is lin. dep. Ex: Are [:], [:], [2] linearly independent? Let $C_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_3 \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ C₁ C₂ C₃ | ° | ° | trivial 5.1.
and other solutions $C_1 = (z = (3 = 0))$ (trivial sol.)