1.1 Geometry and Algebra of Vecbrs Grit

Ex:

Draw $\vec{u}+\bar{v}+\bar{w}$

order doesn't matter when adding vectors

$$
\begin{aligned}
& (\vec{u}+\vec{v})+\vec{w} \\
= & (\vec{w}+\vec{v})+\vec{u}
\end{aligned}
$$

Notation: \vec{v} in \mathbb{R}^{n} means that \vec{v} has n components, and each Component is a real number.

Ex: $\quad \vec{v}=[1,3,2]$
\vec{v} is in \mathbb{R}^{3}
Draw \bar{v}

The zero vector $\overrightarrow{0}$
$\overrightarrow{0}=[0,0]$ in \mathbb{R}^{2}
$\overrightarrow{0}=[0,0,0]$ in \mathbb{R}^{3}
etc.
Useful for algebra

Ex: Let \vec{u} be in \mathbb{R}^{2}
Show that $\vec{u}+(-\vec{u})=\overrightarrow{0}$
Let $\vec{u}=\left[u_{1}, u_{2}\right]$
Start with more complicated side

$$
\begin{aligned}
\vec{u}+(-\bar{u}) & =\left[u_{1}, u_{2}\right]+\left[-u_{1},-u_{2}\right] \\
& =[0,0] \\
& =\overrightarrow{0}
\end{aligned}
$$

Ex: Solve for \vec{x}

$$
7 \vec{x}-\vec{a}=3(\vec{a}+4 \vec{x})
$$

Usual arithmetic rules apply

$$
\begin{aligned}
7 \vec{x}-\vec{a} & =3 \vec{a}+12 \vec{x} \\
-5 \vec{x} & =4 \vec{a} \\
\vec{x} & =-\frac{4}{5} \vec{a}
\end{aligned}
$$

Ex: $\quad \bar{w}=-3\left[\begin{array}{l}1 \\ 1\end{array}\right]+2\left[\begin{array}{l}0 \\ 2\end{array}\right]$
Terminology: " \vec{w} is a linear combination
of $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 2\end{array}\right]$,
with Gefficients -3 and $2^{\prime \prime}$
a) Find \bar{w} algebraically

$$
\begin{aligned}
\bar{w} & =\left[\begin{array}{c}
-3 \\
-3
\end{array}\right]+\left[\begin{array}{l}
0 \\
4
\end{array}\right] \\
& =\left[\begin{array}{c}
-3 \\
1
\end{array}\right]
\end{aligned}
$$

b) Find \bar{w} geometrically

Ex: Write $\bar{w}=\left[\begin{array}{l}4 \\ 1\end{array}\right]$ as a linear combination of $\vec{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}0 \\ 2\end{array}\right]$ by graphing.

Think of \bar{u} and \bar{v} as the axes.

$$
\begin{array}{r}
k(2)=-3 \\
k=\frac{-3}{2}
\end{array}
$$

$$
\bar{w}=4 \bar{u}-\frac{3}{2} \bar{v}
$$

We'll do this algebraically in Ch. 2

$$
\left[\begin{array}{l}
4 \\
1
\end{array}\right]=C_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2}\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

Ex: TRIG
a)

Multiply by $\frac{5}{2}$

b)

Multiply by $\frac{7}{\sqrt{2}}$:

Watch signs

$$
\begin{aligned}
\bar{v} & =\left[-\frac{7}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right] \\
& \propto\left[\frac{-7 \sqrt{2}}{2}, \frac{7 \sqrt{2}}{2}\right]
\end{aligned}
$$

