Test FRI MARCH 6

$$
2.3-2.4,3.1-3.5
$$

$\left.\begin{array}{l}\text { Practice Problems } \\ \text { Videos }\end{array}\right\}$ www. leahhoward. 6 m
Bring Earplugs/Music
4.1 Eigenvalues and Eigenvectors

Ex: Find a basis for the eigenspace E_{8} for $A=\left[\begin{array}{ll}9 & -2 \\ 5 & -2\end{array}\right]$

Solve $[A-\lambda I \mid \overrightarrow{0}]$

$$
\left.\begin{array}{l}
{[A-8 I \mid 0}
\end{array}\right] \quad \begin{array}{cc|c}
{\left[\begin{array}{cc|c}
1 & -2 & 0 \\
5 & -10 & 0
\end{array}\right]} \\
{\left[\begin{array}{cc|c}
x_{1} & x_{2} & 0 \\
0 & -2 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { ReEF }} \\
x_{2}=t \\
x_{1}-2 x_{2}=0 \rightarrow \quad x_{1}=2 t
\end{array}
$$

eigenvectors $\quad \vec{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right] t \quad(t \neq 0)$

$$
\text { basis }=\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
$$

FACT
Let B be an $n \times n$ matrix.
$B \vec{x}=\overrightarrow{0}$ has nontrivial solutions exactly when $\operatorname{det} B=0$

To find eigenvalues of A, solve $\operatorname{det}(A-\lambda I)=0$
Why? λ is an eigenvalue of A
if and only if
if and only if

$$
\begin{array}{cc}
A \vec{x}=\lambda \vec{x} \quad(\vec{x} \neq \overrightarrow{0}) \\
(A-\lambda I) \vec{x}=\overrightarrow{0} \quad & (\vec{x} \neq \overrightarrow{0})
\end{array}
$$

if and only if $\operatorname{det}(A-\lambda I)=0$
Ex: Find all eigenvalues of $A=\left[\begin{array}{ll}4 & -2 \\ 5 & -7\end{array}\right]$
Solve $\operatorname{det}(A-\lambda I)=0$

$$
\begin{gathered}
\left|\begin{array}{cc}
4-\lambda & -2 \\
5 & -7-\lambda
\end{array}\right|=0 \\
(4-\lambda)(-7-\lambda)-(-2)(5)=0 \\
-28-4 \lambda+7 \lambda+\lambda^{2}+10=0 \\
\lambda^{2}+3 \lambda-18=0 \\
(\lambda+6)(\lambda-3)=0 \\
\lambda=-6,3
\end{gathered}
$$

Summary

To find eigenvectors,
eigenvalues, solve $\operatorname{det}(A-\lambda I)=0$ (equation)

Ex: $A=\left[\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right]$
Find the eigenvalues and eigenvectors geometrically.

$$
A \vec{x}=\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{1} \\
x_{2}
\end{array}\right]
$$

x-axis

$$
A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0
\end{array}\right]}_{\lambda=-2}
$$

eigenvector $\quad \vec{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

y-axis

$$
A\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

eigenvector $\quad \vec{x}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

$$
\begin{aligned}
& E_{-2}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \\
& E_{1}=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
\end{aligned}
$$

4.2 Determinants
(Return to eigenvalues in 4.3)

- Car write $\operatorname{det} A$ or $|A|$
- Determinants only defined for square matrices

Cofaclor Expansion

- Can expand along any row/clumn
- Checkerboard patten for signs $\quad\left[\begin{array}{l}++ \\ -+.\end{array}\right]$

Ex: $\quad A=\left[\begin{array}{lll}4 & 1 & 6 \\ 1 & 2 & 3 \\ 6 & 0 & 7\end{array}\right]$

Find $\operatorname{det} A$
$\eta^{\text {nd }}$ Glum :

$$
\begin{aligned}
\left\lvert\, \begin{array}{ll}
4 & 1 \\
1 & 1 \\
2 & 6 \\
6 & 3 \\
0
\end{array}\right. & 7
\end{aligned}|=-1| \begin{array}{ll}
1 & 3 \\
6 & 7
\end{array}|+2| \begin{array}{ll}
4 & 6 \\
6 & 7
\end{array}|-0| \begin{array}{ll}
4 & 6 \\
1 & 3
\end{array}|\mid
$$

Alternatively: $3^{\text {rd }}$ Row:

$$
\left.\begin{aligned}
\left|\begin{array}{lll}
4 & 1 & 6 \\
1 & 2 & 3 \\
6 & 0 & 7
\end{array}\right| & =6\left|\begin{array}{ll}
1 & 6 \\
2 & 3
\end{array}\right|-0
\end{aligned}|+7| \begin{array}{ll}
4 & 1 \\
1 & 2
\end{array} \right\rvert\,
$$

Ex:

$$
\begin{aligned}
\left|\begin{array}{llll}
1 & 6 & 2 & 3 \\
0 & 0 & 0 & 4 \\
2 & 1 & 1 & 6 \\
2 & 0 & 5 & 7
\end{array}\right| & =4\left|\begin{array}{lll}
1 & 6 & 2 \\
2 & 1 & 1 \\
2 & 0 & 5
\end{array}\right| \\
& =4\left[2\left|\begin{array}{ll}
6 & 2 \\
1 & 1
\end{array}\right|+5\left|\begin{array}{ll}
1 & 6 \\
2 & 1
\end{array}\right|\right]\left[\begin{array}{l}
t
\end{array}\right]\left[\begin{array}{l}
t \\
- \\
\oplus
\end{array}\right] \\
& =4[2(4)+5(-11)] \\
& =-188
\end{aligned}
$$

