Week 3 Friday January 24, 2020 9:39 AM

2.2 Surg Splems Guild
E:
$$[\frac{1}{3} + \frac{1}{4}]_{0}^{0}$$
 or $\{\frac{1}{3} + \frac{1}{4} + \frac{1}{2} = 0\}$
Solution: $\frac{1}{3} = 0$
 $\boxed{12 = 0}$
Terminology
 $\overline{z} = \overline{0}$ is called the trivial solution
 $[\frac{1}{2} + \frac{1}{2} + \frac{1}{2}]_{0}^{0}$ is called a homogeness system
 \boxed{fAct}
A homogeneous system always has at
least 1 solution: the trivial solution
 \boxed{Ex} : Consider m [[]] [] where n>m
How many solutions?
At least 1 solution: $\overline{z} = \overline{0}$
 $\boxed{0}$ $\boxed{1}$ REF
 ≥ 1 parameter
 $\boxed{2.3}$ Span and Linear Independence
 \boxed{Ex} : Is $\begin{bmatrix} 8\\ -10 \end{bmatrix}$ a linear Gonbination
of $\begin{bmatrix} -1\\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2\\ -3 \end{bmatrix}$?

of
$$\begin{bmatrix} -1\\ z \end{bmatrix}$$
 and $\begin{bmatrix} 2\\ -3 \end{bmatrix}$?

Let
$$C_{1}\begin{bmatrix} -1\\ 2 \end{bmatrix} + C_{2}\begin{bmatrix} 2\\ -3 \end{bmatrix} = \begin{bmatrix} 8\\ -10 \end{bmatrix}$$

 $\lim_{l \to \infty} C_{em}$.
 $\begin{bmatrix} -C_{1}\\ 2C_{1}\end{bmatrix} + \begin{bmatrix} 2C_{2}\\ -3C_{2}\end{bmatrix} = \begin{bmatrix} 8\\ -10 \end{bmatrix}$
 $\begin{bmatrix} -C_{1}+2C_{2}\\ 2C_{1}-3C_{2}\end{bmatrix} = \begin{bmatrix} 8\\ -10 \end{bmatrix}$
 $\begin{bmatrix} -C_{1}+2C_{2}=8\\ 2C_{1}-3C_{2}=-10 \end{bmatrix}$
 $\begin{bmatrix} -C_{1}+2C_{2}=8\\ 2C_{1}-3C_{2}=-10 \end{bmatrix}$
 $\begin{bmatrix} C\\ 2\\ -3\\ -10 \end{bmatrix}$
 $R_{2}-2R_{1}\begin{bmatrix} 0\\ -2\\ -3\\ -10 \end{bmatrix} = \begin{bmatrix} 8\\ -10 \end{bmatrix}$
 $R_{2}-2R_{1}\begin{bmatrix} 0\\ 0\\ 0\end{bmatrix} \begin{bmatrix} 1\\ -2\\ -3\\ -10 \end{bmatrix}$
 $R_{2}-2R_{1}\begin{bmatrix} 0\\ 0\end{bmatrix} \begin{bmatrix} 1\\ -2\\ -3\\ -10 \end{bmatrix}$
 $R_{2}-2R_{1}\begin{bmatrix} 0\\ 0\end{bmatrix} \begin{bmatrix} 1\\ -2\\ -3\\ -10 \end{bmatrix}$
 $R_{2}-2R_{1}\begin{bmatrix} 0\\ 0\end{bmatrix} \begin{bmatrix} 1\\ -2\\ -3\\ -10 \end{bmatrix}$
 $R_{1}+2R_{2}\begin{bmatrix} 1\\ 0\\ 0\end{bmatrix} \begin{bmatrix} 1\\ -2\\ -3\\ -10 \end{bmatrix}$
 $R_{2}-2R_{1}\begin{bmatrix} 0\\ 0\end{bmatrix} \begin{bmatrix} 1\\ -2\\ -3\\ -10 \end{bmatrix}$
 $R_{1}+2R_{2}\begin{bmatrix} 1\\ 0\\ -3\\ -10 \end{bmatrix} \begin{bmatrix} 8\\ -10\\ -10 \end{bmatrix}$
To check : $4\begin{bmatrix} -1\\ 2\end{bmatrix} + 6\begin{bmatrix} -2\\ -3\\ -3\end{bmatrix} = \begin{bmatrix} 8\\ -10\\ -10 \end{bmatrix}$

$$\frac{E_X}{e_1} = \frac{1}{2} =$$

Def
The span of
$$\overline{u_1}, \overline{u_2}, ..., \overline{u_n}$$
 is the set
of all linear Gribinations of $\overline{u_1}, \overline{u_2}, ..., \overline{u_n}$.

$$\underline{F}_{X}: a) \quad \text{span} (\overline{a}, \overline{b}) = \{\overline{o}, \overline{a}, 4\overline{a}, -\pi\overline{a}, \\ \overline{b}, 7\overline{b}, -\sqrt{z}\overline{b}, 3\overline{a} - z\overline{b}, ..., \}$$

$$b) \quad \text{span} (\overline{u}_{1}, \overline{u}_{2}, ..., \overline{u}_{n}) = \{C, \overline{u}_{1} + C_{2}\overline{u}_{2} + ... + C_{n}\overline{u}_{n}\}$$

$$C_{1}, (\overline{c}_{2}, ..., C_{n}; any real #$$

$$\underline{F}_{X}: \quad \text{Describe each span geometrically}$$

$$a) \quad \text{span} ([1], [-2])$$

$$Line \quad \text{in } \mathbb{R}^{2} \quad \text{through origin}$$

$$b) \quad \text{span} ([1], [-2])$$

$$= all \quad of \quad \mathbb{R}^{2}$$

$$(entire \quad xy - plane)$$

c) span
$$\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -3 \\ -3 \\ -3 \end{bmatrix} \right)$$

= line in \mathbb{R}^3 through origin

