Week 10 Wednesday

March 11, 2020 9:06 AM

4.3 Finding Eigenvalues Got'd

Ex: A is 5x5

 $|A-\lambda I| = (7-\lambda)^3 (9-\lambda)^2$

Basis for E7 = { | }

Basis for Eq = { [],[]}

Eigenvalue Algebraic Multiplicity Geometric Mult.

FACT

For each eigenvalue, geometric multiplicity < algebraic multiplicity

When geo. mult = alg. mult for each eigenvalue, then A has a weful property. (Section 4.4)

5 Facts about Eigenvalues

D'A is invertible if and only if 0 is not an eigenvalue of A

A is invertible \Leftrightarrow det $A \neq 0$

 \iff det $(A-oI) \neq 0$

0 is not an eigenvalue of A

If A is invertible and Az=lz then I is an eigenvector of A-1 with eigenvalue 1.

Multiply by
$$A^{-1}$$
: $A^{-1}AX = A^{-1}\lambda X$

$$A^{-1}Ax = A^{-1}\lambda x$$

$$x = A^{-1}\lambda x$$

$$x = \lambda A^{-1}x$$

(\(\) is a constant)

$$\frac{1}{\lambda} \vec{x} = A^{-1} \vec{x}$$

$$A^{-1} \vec{x} = \left(\frac{1}{\lambda}\right) \vec{x}$$
eigenvector eigenvalue

(3) If
$$A\vec{x} = \lambda \vec{x}$$
 then $A^n \vec{x} = \lambda^n \vec{x}$

$$\lambda^n \vec{x} = \lambda^n \vec{x}$$

$$(f_{n} = 2, 3, ...)$$

$$A^{n}\vec{x} = A^{-1}(A\vec{x})$$

$$=$$
 A^{n-1} $\lambda \vec{x}$

$$=$$
 $\lambda A^{n-1} \vec{\lambda}$

$$= \lambda^2 A^{-2} \vec{\lambda}$$

$$=$$
 $\sum_{n}^{\infty} \vec{J}$

4) If
$$Ax = Ax$$
 then of is an eigenvector of A+KI with eigenvalue $A+K$

$$(A+kI)\vec{x} = A\vec{x} + kI\vec{x}$$

$$= \lambda\vec{x} + k\vec{x}$$

$$= (A+k)\vec{x}$$
eigenvalue eigenvector

A is invertible with eigenvalues -2 and 3

figenualities of A-1:

 A^{+} : $(-2)^{+}$, 3^{+}

A-SI: -7, -2

Suppose A has eigenvectors
$$\vec{V}_1, \vec{V}_2, ..., \vec{V}_m$$

Gresponding to $\lambda_1, \lambda_2, ..., \lambda_m$.
 \vec{A} $(c_1\vec{V}_1 + c_2\vec{V}_2 + ... + c_m\vec{V}_m) = c_1\lambda_1^k\vec{V}_1 + ... + c_m\lambda_m^k\vec{V}_m$

· Generalitation of Fact 3

· Coefficients are preserved

eigenvector $T_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ corresponding to $\lambda_1 = 2$

 $\vec{V}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \qquad \qquad \lambda_2 = 3$

1)
$$\begin{bmatrix} -1 \\ 12 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + C_2 \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} C_1 & C_2 \\ 1 & -1 \\ 3 & 2 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + C_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$(-1) \begin{bmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & 3 \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ 12 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 3 \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$= 2 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 3 \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$= 2 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$= 2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$= 32 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} -211 \\ 5\%2 \end{bmatrix}$$