Test Fri Nov 8
3.4-3.6, 4.1-4.2 (6 Questions)

Practice Problems on Website
4.3 Eigenvalues contd

5 Facts
(2) If A is invertible and $A \vec{x}=\lambda \vec{x}$ then \bar{x} is an eigenvector of A^{-1} with eigenvalue $\frac{1}{\lambda}$.

$$
\begin{array}{rlrl}
& & A \vec{x}=\lambda \vec{x} \\
\Rightarrow & A^{-1} A \vec{x} & =A^{-1} \lambda \vec{x} \\
\Rightarrow & \quad \vec{x} & =A^{-1} \lambda \vec{x} \\
\Rightarrow & \vec{x}=\lambda A^{-1} \vec{x} \\
\Rightarrow & \frac{1}{\lambda} \vec{x}=A^{-1} \vec{x} \\
& & A^{-1} \vec{x} & =\frac{1}{\lambda} \vec{x}
\end{array}
$$

(3) If $A \bar{x}=\lambda \bar{x}$
then $\quad A^{n} \vec{x}=\lambda^{n} \vec{x} \quad(n=1,2,3, \ldots)$

$$
A^{n} \vec{x}=A^{n-1} A \vec{x}
$$

$$
\begin{aligned}
& =A^{n-1}(\lambda \vec{x}) \\
& =\lambda A^{n-1} \vec{x} \\
& =\lambda^{2} A^{n-2} \vec{x} \\
& \vdots \\
& =\lambda^{n} \vec{x}
\end{aligned}
$$

(4) If $A \bar{x}=\lambda \bar{x}$ then \bar{x} is an eigenvector of $A+k I$ with eigenvalue $\lambda+k$

$$
\begin{aligned}
(A+k I) \bar{x} & =A \vec{x}+k I \vec{x} \\
& =\lambda \vec{x}+k \vec{x} \\
& =(\lambda+k) \vec{x}
\end{aligned}
$$

(5) Suppose A has eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ Corresponding to eigenvalues $\lambda_{1}>\cdots, \lambda_{m}$

$$
A^{k}\left(C_{1} \vec{v}_{1}+\ldots+c_{m} \vec{v}_{m}\right)=c_{1} \lambda_{1}^{k} \vec{v}_{1}+\ldots+c_{m} \lambda_{m}^{k} \vec{v}_{m}
$$

\rightarrow Generalization of Fact 3 Coefficients stay the same

Ex: A is a 2×2 matrix with $\lambda_{1}=-2 \quad$ Gresponding to eigenvector $\left.\quad \bar{x}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], ~\right]$ and $\lambda_{2}=3$

$$
\vec{x}_{2}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

Find $A^{3}\left[\begin{array}{l}11 \\ 2\end{array}\right]$

1) $\left[\begin{array}{l}11 \\ 2\end{array}\right]=c_{1}\left[\begin{array}{l}1 \\ 2\end{array}\right]+c_{2}\left[\begin{array}{c}2 \\ -1\end{array}\right]$

$$
\leadsto\left[\left.\begin{array}{cc}
c_{1} & c_{2} \\
1 & 0 \\
0 & 1
\end{array} \right\rvert\,\right.
$$

2)

$$
\begin{aligned}
& A^{3}\left[\begin{array}{l}
11 \\
2
\end{array}\right] \\
= & \left.A^{3}\left(\begin{array}{l}
3
\end{array} \begin{array}{l}
1 \\
2
\end{array}\right]+4\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right) \\
= & C_{1} \lambda_{1}^{3} \bar{x}_{1}+C_{2} \lambda_{2}^{3} \bar{x}_{2} \quad(\text { Fact } 5) \\
= & 3(-2)^{3}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+4(3)^{3}\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \\
= & -24\left[\begin{array}{l}
1 \\
2
\end{array}\right]+108\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \\
= & {\left[\begin{array}{c}
192 \\
-156
\end{array}\right] }
\end{aligned}
$$

4.4 Diagonalization
4.4 Diagonalization

Def
An $n \times n$ matrix A is diagonalizable if there exists an invertible matrix P
so that $P^{-1} A P=D_{<}$diagonal
(easy to compute A^{n})
Ex: Find P that diagonalizes

$$
A=\left[\begin{array}{ccc}
2 & 0 & -2 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

\rightarrow Find a basis for each eigenspace
$\lambda=2,3 \quad$ (A is upper triangular)

$$
\begin{align*}
& E_{2}: \quad {\left[\begin{array}{ll|l}
A-\lambda I & 1 \overrightarrow{0}
\end{array}\right] } \\
& {\left[\begin{array}{lll|l}
A-2 I & 1 \overrightarrow{0}
\end{array}\right] } \\
& {\left[\begin{array}{ccc|c}
0 & 0 & -2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] } \\
& \sim {\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \text { RREF } } \\
& x_{1}=t \\
& x_{2}=0 \\
& x_{3}=0 \tag{10}
\end{align*}
$$

$$
\begin{aligned}
& x_{2}=0 \\
& x_{3}=0 \\
& \vec{x}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] t \quad \text { Basis }=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} \\
& E_{3}: \quad[A-3 I \mid \overrightarrow{0}] \quad A=\left[\begin{array}{ccc}
2 & 0 & -2 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right] \\
& {\left[\begin{array}{ccc|c}
-1 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& R_{1} /(-1)\left[\begin{array}{ccc|c}
x_{1} & x_{2} & x_{3} & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& x_{3}=t \\
& x_{1}+2 x_{3}=0 \rightarrow x_{1}=-2 x_{3}=-2 t \\
& \vec{x}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] 1+\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right] t \\
& \text { Basis }=\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

P : put eigenvectors into Columns

$$
P=\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\left(\begin{array}{rr}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]\right.
$$

D: diagonal matrix
eigenvalues of A on the diagonal, in same order as P

$$
D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Check:

$$
\begin{gathered}
P^{-1} A P=D \\
{\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & -2 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]}
\end{gathered}
$$

