Cowsepack on DZL
which problems to do?
Cows Outline or Cause Website
1.1 Contd

Ex: a)

Find \bar{u}

Multiply by $\frac{5}{2}$:

$$
\left.\vec{u}=\left[\frac{s \sqrt{3}}{2}, \frac{s}{2}\right] \frac{s \sqrt{3}}{2}\right]
$$

b)
 Find \vec{v}

Multiply by $\frac{7}{\sqrt{2}}$:

$$
\begin{aligned}
& \frac{7}{\sqrt{2}} \underbrace{7}_{\frac{7}{\sqrt{2}}}=\frac{7 \sqrt{2}}{2} \\
& \bar{v}=\left[\frac{-7 \sqrt{2}}{2}, \frac{7 \sqrt{2}}{2}\right]
\end{aligned}
$$

1.2 Length and Angle

$$
\bar{u}=[1,4,2,-9] \quad \bar{v}=[2,3,-2,-1]
$$

Dot Product $\bar{u} \cdot \bar{v}=1(2)+4(3)+2(-2)+(-9)(-1)$

$$
=19
$$

Ex: a)

$$
\begin{aligned}
{[1,5] \cdot[2,-3] } & =1(2)+5(-3) \\
& =-13
\end{aligned}
$$

b) $[1,5] \cdot[2,3,0]$ is undefined
c) $\left[u_{1}, u_{2}\right] \cdot\left[u_{1}, u_{2}\right]=u_{1}^{2}+u_{2}^{2}$

FACT 3 Properties of Dot Product:

1) $\vec{u} \cdot \vec{u} \geqslant 0$
2) $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$ for all \vec{u}, \vec{v}
3) $\vec{u} \cdot \vec{u}=0$ if and only if $\bar{u}=\overrightarrow{0}$
$\left\{\begin{array}{l}\text { if } \bar{u} \cdot \bar{u}=0 \text { then } \bar{u}=\overrightarrow{0} \text { (less obvious) } \\ \text { if } \bar{u}=\overline{0} \text { then } \bar{u} \cdot \bar{u}=0 \text { (obvious) }\end{array}\right.$

Ex: Simplify
a)

$$
\begin{aligned}
& (\bar{u}+\bar{v}) \cdot(\bar{u}+\bar{v}) \\
= & \bar{u} \cdot \vec{u}+\underbrace{\bar{u} \cdot \bar{v}+\bar{v} \cdot \vec{u}+}+\vec{v} \cdot \vec{v} \\
= & \bar{u} \cdot \bar{u}+2 \bar{u} \cdot \bar{v}+\bar{v} \cdot \bar{v}
\end{aligned}
$$

b)

$$
\begin{aligned}
& 3 \vec{u} \cdot(-2 \bar{v}+5 \bar{w}) \\
= & -6 \bar{u} \cdot \vec{v}+15 \bar{u} \cdot \vec{w}
\end{aligned}
$$

Caution: $\vec{u} \vec{v}$ is nonsense

DEF
The length or norm of $\bar{v}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$

$$
\text { is } \quad\|\bar{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+r_{n}^{2}}
$$

Genes from

Ex: a) $\|[1,1,1,-2]\|=\sqrt{1+1+1+4}=\sqrt{7}$
b) $\|[3,-1]\|=\sqrt{9+1}=\sqrt{10}$

Notice $[3,-1] \cdot[3,-1]=3(3)+(-1)(-1)$ $=10$

FACT

$$
\vec{v} \cdot \vec{v}=\|\vec{v}\|^{2} \quad \text { for any } \bar{v}
$$

Ex: Let $\bar{v}=\left[v_{1}, v_{2}, v_{3}\right]$
Simplify $\|-3 \vec{r}\|$

$$
\begin{aligned}
& =\left\|\left[-3 v_{1},-3 v_{2},-3 v_{3}\right]\right\| \\
& =\sqrt{\left(-3 v_{1}\right)^{2}+\left(-3 v_{2}\right)^{2}+\left(-3 v_{3}\right)^{2}} \\
& =\sqrt{9 v_{1}^{2}+9 v_{2}^{2}+9 v_{3}^{2}} \\
& =\sqrt{9\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right)} \\
& =3 \sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}} \\
& =3\|\bar{v}\|
\end{aligned}
$$

$$
\|-3 \bar{r}\|=3\|-\vec{v}\|
$$

"The length of $-3 \bar{v}$ is 3 times the length of \bar{v} "
FACT

$$
\|c \bar{v}\|=|c|\|\bar{v}\| \text { for } \text { my } \bar{v}
$$

