Math 251 X02
Test Three

Time: 50 minutes
Total: 20 marks

Name: \qquad

1. [3 marks] Solve:
$\left[\begin{array}{ccc}1 & 0 & 0 \\ -3 & 1 & 0 \\ 2 & 4 & 1\end{array}\right]\left[\begin{array}{ccc}6 & 1 & 3 \\ 0 & 2 & -2 \\ 0 & 0 & 7\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}3 \\ -11 \\ 47\end{array}\right]$
2. [3 marks] A and B are 4×4 matrices. Given that $\operatorname{det}(A)=a$ and $\operatorname{det}(B)=b$, find $\operatorname{det}\left(2 A B^{T}\right)$.
3. [3 marks] Find all the eigenvalues of $A=\left[\begin{array}{cc}7 & -2 \\ -1 & 6\end{array}\right]$.
4. [4 marks] Find all eigenvectors of $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right]$ corresponding to $\lambda=-2$.
5. [3 marks] $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 10 & 10 \\ 4 & 8 & 13 & 18\end{array}\right]$ has $\operatorname{RREF}=\left[\begin{array}{cccc}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.

Find:
a) a basis for the column space of A
b) $\operatorname{dim}(\operatorname{null}(A))$
6. [4 marks] Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}8 \\ 17\end{array}\right]$.
T is a linear transformation such that $T\left(\mathbf{v}_{1}\right)=\left[\begin{array}{c}2 \\ -9\end{array}\right]$ and $T\left(\mathbf{v}_{2}\right)=\left[\begin{array}{c}4 \\ 10\end{array}\right]$.
Find $T\left(\left[\begin{array}{l}109 \\ 233\end{array}\right]\right)$.

