Math 251 X02
Test One

Time: 50 minutes
Total: 25 marks

Name: \qquad

1. [5 marks] Let $\mathbf{u}=\left[\begin{array}{c}5 \\ 1 \\ -1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}-8 \\ 6 \\ 3\end{array}\right]$.
a) Calculate $\mathbf{u} \times \mathbf{v}$.
b) Consider the triangle formed by placing \mathbf{u} and \mathbf{v} tail-to-tail. Find the area of the triangle.
c) Consider the plane that has direction vectors \mathbf{u} and \mathbf{v} and passes through $(3,-1,2)$. Find the general form of the plane.
2. $[6$ marks $]$ Let $\mathbf{u}=\left[\begin{array}{c}3 \\ -2 \\ 7\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 6\end{array}\right]$. Find:
a) a vector of length one parallel to $\mathbf{u}-\mathbf{v}$
b) the angle between \mathbf{u} and \mathbf{v}
3. [5 marks] Solve using Gauss-Jordan Elimination:

$$
\begin{aligned}
3 x+6 y+6 z & =42 \\
2 x+y+7 z & =19 \\
17 x+16 y+52 z & =184
\end{aligned}
$$

4. [5 marks] Find the distance between the point $P=(1,-3,6)$ and the plane $x-3 y+7 z=4$.
5. [4 marks] How many solutions does the system below have? Your answer will depend on the value of k.
$\left[\begin{array}{cc|c}1 & k & 1 \\ k & 64 & 8\end{array}\right]$
