1. [4 marks] We want to balance:

$$\mathrm{CO_2} + \mathrm{H_2O} \rightarrow \mathrm{C_6H_{12}O_6} + \mathrm{O_2}$$

Set up a system of equations. DO NOT SOLVE THE SYSTEM.

C:
$$W = 6y$$

0: $2W + X = 6y + 2z$
H: $2X = 12y$

or
$$2x + 1 - 6y = 2$$

 $2x + 12y = 0$
 $1 - 6 - 2$
 $1 - 6 - 2$
 $1 - 6 - 2$
 $1 - 6 - 2$
 $1 - 6 - 2$

2. [4 marks] A is an invertible matrix. Solve for X:

$$(AX + 3I)^T = B$$

$$(AX + 3I)^{T} = B^{T}$$

$$AX + 3I = B^{T}$$

$$AX - B^{T} - 3I$$

$$X = A^{T}(B^{T} - 3I)$$

3. [1 mark] The set of vectors $\{x, y\}$ is linearly dependent. Is the set of vectors $\{x, y, z\}$ linearly dependent? Explain briefly.

There's a linear dependency among I and I and I there's a linear dependency among I, I and I.

4. [4 marks] Given
$$A = \begin{bmatrix} -2 & 3 \\ 8 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -5 \\ 5 & 1 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

Find $(A-4B)^TC^2$.

$$= \left(\begin{bmatrix} -2 & 3 \\ 8 & 5 \end{bmatrix} + \begin{bmatrix} -4 & 20 \\ -20 & -4 \end{bmatrix} \right) \begin{bmatrix} 1 & 2 & 7 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$=$$
 $\begin{bmatrix} -6 & 23 \end{bmatrix}$ $\begin{bmatrix} 1 & 22 \end{bmatrix}$

5. [6 marks] Solve the system by finding A^{-1} .

$$x - 2y - 3z = 16$$

$$4x - 7y - 16z = 45$$

$$-3x + 6y + 10z = -45$$

$$\begin{bmatrix}
1 & -2 & -3 & | & 0 & 0 & 0 \\
4 & -4 & | & | & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & | & | & 0 & 0 & 0 & 0 \\
-2 & -4 & | & -4 & | & -4 & | & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & | & | & -4 & | & -4 & | & -4 & | & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & -3 & | & | & -4 & | & & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & -4 & | & &$$