Quiz tomorrow 24.8

$$f(x) \approx f(a) + f'(a)(x-a)$$

will be given

f(x)	f'(x)
sec x	secutanx
tanx	26cz×
Cos X	-sinx
sin x	Cos x
CSCX	-cscxGtx
cotx	- CSC3X
arcsin X	11-1/2
arcesol	1 -1 -X2
arctanx	1 1+ X2

27.6 Derivatives of Exponential Functions

$$\frac{f(x)}{\ln x} \qquad \frac{f'(x)}{\frac{1}{2}}$$

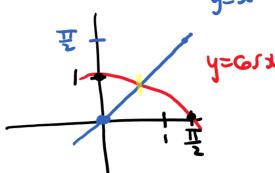
$$\log_2 x \qquad \frac{1}{\ln 2} \cdot \frac{1}{x}$$

$$e^x \qquad e^x \qquad \frac{1}{\ln 7} \cdot \frac{1}{7}$$

$$\frac{tx}{a}$$
: find $f(x)$
 $f(x) = 9e^{2x}(e^{3x} + e^{4x})$
 $expand$
 $f(x) = 9(e^{5x} + e^{6x})$
 $f'(x) = 9(5e^{5x} + 6e^{6x})$

Aside
$$f(x) = 4$$
 3x+1
$$f'(x) = 1 + 4 + 4 + 3$$

b)
$$f(x) = \frac{3x}{e^{5x}} + e^{x}$$
 simplify


$$f(x) = e^{-Sx}(e^{3x} + e^{4x})$$

 $f(x) = e^{-2x} + e^{-x}$

27.8 Applications of Ch 27

Ex: Approximate a solution to x=cosxNewton's Method (24.2)

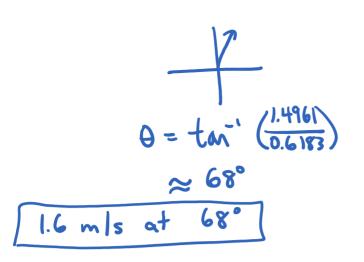
$$t(x) = 1 + \sin x$$

Choose X.

Choose x = 1

χ_{0}	f(xn)	す(パケ)	1 = 1+nk	+(1/2) - (1/2)
0.7504 0.7391	0.4597 0.0190 0.0000 Rad	1.8415 1.6819 * Mode 1 ~ 0.74	0.7504 0.7391 0.7391	(0.75) (0.74) (0.74)

Ex: An object has position x= logz (3t+4) y= 3


Tind the relating at 1 second

(Position: m Time: 5)

$$\sqrt{x} = \frac{1}{h^2} \cdot \frac{1}{3t+4} \cdot 3 \qquad \sqrt{y} = \ln 3 \cdot 3 \cdot \cos t$$

$$\frac{Radian Mode}{2t=1} \quad \sqrt{x} \approx 0.6183 \quad \sqrt{y} \approx 1.4961$$

Speed
$$V = \sqrt{(x_1^2 + V_y^2)} \approx 1.6 \text{ m/A}$$

Direction $\Theta = \tan^{-1}(\frac{V_y}{v_{xx}}) (+180^\circ?)$

