We are cutting the corners from a $12 \mathrm{~cm} \times 12 \mathrm{~cm}$ metal sheet to form a box with no top. Find the height of the box that maximizes the box's volume.

$$
\begin{aligned}
& \text { Maximize } \quad V=(12-2 x)^{2} x \\
& V^{\prime}=(12-2 x)^{2}(1)+x[2(12-2 x)(-2)] \\
& =(12-2 x)(12-2 x-4 x) \\
& =(12-2 x)(12-6 x) \\
& \text { Set } V^{\prime}=0: \quad(12-2 x)(12-6 x)=0 \\
& \begin{array}{cl}
x=6 & x=2 \\
\text { REL } & \text { REL } \\
\text { liNo } & \text { MAX } \\
\text { (Volume }=0 \text {) } &
\end{array} \\
& x=2 \mathrm{~cm}
\end{aligned}
$$

Alternatively:

$$
\begin{aligned}
V & =(12-2 x)^{2} x \\
& =\left(144-48 x+4 x^{2}\right) x \\
& =144 x-48 x^{2}+4 x^{3} \\
V^{\prime} & =144-96 x+12 x^{2}
\end{aligned}
$$

\rightarrow

$$
\begin{gathered}
V^{\prime}=144-96 x+12 x^{2} \\
\text { Set } V^{\prime}=0: \quad 144-96 x+12 x^{2}=0 \\
12-8 x+x^{2}=0 \\
(x-6)(x-2)=0 \\
L \quad \downarrow=2 \\
x=6 \quad x=L \\
\text { REL } \quad \text { REL } \\
\text { MIN } \quad \text { MAX } \\
\text { (Volume }=0) \\
x=2 \mathrm{~cm}
\end{gathered}
$$

