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Course Overview

Matrix Algebra is also known as “Linear Algebra” or “Algebra and Geometry.”

A geometry problem could involve visualizing lines and planes in 3D space.

An algebra problem could involve calculating distances and angles, especially in higher di-
mensions.

Many problems in Matrix Algebra involve the interplay of geometry and algebra.

Why do we need higher dimensions? Tracking an object’s spatial location and temperature
is a 4D problem.
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Chapter 1: Vectors
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1.1 The Geometry and Algebra of Vectors

1.1 The Geometry and Algebra of Vectors

Definition: A vector is a line segment with direction. Used for velocity, forces etc.

Example: Given O = (0, 0), A = (4, 2) and B = (5, 5). Draw the vectors
−→
OA and

−→
AB.

Then write them in component notation.
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1.1 The Geometry and Algebra of Vectors

Example: Given C = (−1,−3) and D = (2,−1). Find v⃗ =
−−→
CD and draw it.

Fact: A given vector can be drawn from any initial position. Rephrased: vectors with the
same length and the same direction are considered to be the same vector.

Definition: A vector is in standard position if it starts at the origin.

Notation: We use square brackets for vectors and round brackets for points.
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1.1 The Geometry and Algebra of Vectors

Example: Let u⃗ = [−1, 2] and v⃗ = [1, 3]. Find u⃗+ v⃗ both algebraically and geometrically.

Example: Graph u⃗, v⃗ and u⃗+ v⃗ without a coordinate system.

Example: Let v⃗ = [1, 3]. Graph 2v⃗,−v⃗ and −3v⃗.

Definition: The process of multiplying a vector by a real number is called
scalar multiplication. It produces a vector that is parallel to the original vector.
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1.1 The Geometry and Algebra of Vectors

Example: Calculate [2, 6]− [3, 4]

Example: Place u⃗ and v⃗ tail to tail. Find the vector that runs from the head of v⃗ to the
head of u⃗.

Example: Place u⃗ and v⃗ tail to tail. Draw the parallelogram formed by u⃗ and v⃗. Label
the four diagonals.
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1.1 The Geometry and Algebra of Vectors

Fact: Order doesn’t matter when adding vectors. For any vectors u⃗, v⃗ and w⃗:
u⃗+ v⃗ = v⃗ + u⃗
(u⃗+ v⃗) + w⃗ = (w⃗ + u⃗) + v⃗

Example: Let u⃗, v⃗ and w⃗ be positioned tail to tail to tail. Show geometrically that
(u⃗+ v⃗) + w⃗ = (w⃗ + u⃗) + v⃗

Fact: The above example illustrates that we can write u⃗+ v⃗ + w⃗ without any bracketing.
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1.1 The Geometry and Algebra of Vectors

Definition: Consider the expression: v⃗ in Rn. This means that v⃗ has n components, and
each component is a real number.

Example: Draw v⃗ = [1, 3, 2] in R3.

Definition: The zero vector is written 0⃗. Each of its components is zero. The zero vector
is useful for algebra.

Example: Write the zero vector in R2 and R3.

Example: Let u⃗ be in R2. Show (prove) that u⃗+ (−u⃗) = 0⃗.
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1.1 The Geometry and Algebra of Vectors

Example: Solve for x⃗ given that 7x⃗− a⃗ = 3(⃗a+ 4x⃗).

Definition: Consider the statement:

w⃗ is a linear combination of

[
1
1

]
and

[
0
2

]
with coefficients −3 and 2.

This means that w⃗ = −3

[
1
1

]
+ 2

[
0
2

]
.

Example: Let w⃗ = −3

[
1
1

]
+ 2

[
0
2

]
.

a) Find w⃗ algebraically.

b) Find w⃗ geometrically.

9



1.1 The Geometry and Algebra of Vectors

Example: Write w⃗ =

[
4
1

]
as a linear combination of u⃗ =

[
1
1

]
and v⃗ =

[
0
2

]
by graphing.
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1.1 The Geometry and Algebra of Vectors

Example: a) Let u⃗ be a vector of length 5, in standard position, rotated 30◦ from the
positive x-axis. Find u⃗ algebraically.

b) Let v⃗ be a vector of length 7, in standard position, rotated 135◦ from the positive x-axis.
Find v⃗ algebraically.
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1.1 The Geometry and Algebra of Vectors

Comment: Vectors are often used to represent velocity, acceleration or forces. The vector’s
direction represents the direction of the velocity/acceleration/force. The vector’s length
represents the magnitude of the velocity/acceleration/force.
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1.2 Length and Angle

1.2 Length and Angle

Example: Let u⃗ = [1, 4, 2,−9] and v⃗ = [2, 3,−2,−1]. Calculate the dot product u⃗ · v⃗

Example: Calculate:
a) [1, 5] · [2,−3]

b) [1, 5] · [2,−3, 0]

c) [u1, u2] · [u1, u2]

Fact: Three Properties of the Dot Product
Let u⃗, v⃗ be in Rn. Then:
1) u⃗ · u⃗ ≥ 0
2) u⃗ · v⃗ = v⃗ · u⃗
3) u⃗ · u⃗ = 0 if and only if u⃗ = 0⃗

Example: Break Property 3 into two statements, and decide which is more obvious.
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1.2 Length and Angle

Example: Simplify:
a) (u⃗+ v⃗) · (u⃗+ v⃗)

b) 3u⃗ · (−2v⃗ + 5w⃗)

Definition: The length of v⃗ is written ||v⃗||. If v⃗ = [v1, v2, . . . , vn] then ||v⃗|| =
√

v21 + v22 + . . .+ v2n.

Example: Draw a picture to show that in 2D this is the Pythagorean Theorem.

Example: Calculate:
a) ||[1, 1, 1,−2]||

b) ||[3,−1]||

c) [3,−1] · [3,−1]

Fact: v⃗ · v⃗ = ||v⃗||2 for all v⃗
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1.2 Length and Angle

Example: Let v⃗ = [v1, v2, v3]. Simplify || − 3v⃗||.

Fact: ||cv⃗|| = |c| ||v⃗|| for all vectors v⃗ and real numbers c.

Definition: A unit vector is a vector that has length one. Normalizing a vector v⃗ means
finding a unit vector in the same direction as v⃗.

Fact: The following vector has length one and the same direction as v⃗
(provided that v⃗ ̸= 0⃗):
u⃗ = 1

||v⃗|| v⃗

Example: Normalize v⃗ = [4,−2, 1]
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1.2 Length and Angle

Definition: The distance between a⃗ and b⃗ is written d(⃗a, b⃗). It is calculated by

d(⃗a, b⃗) = ||⃗a− b⃗||

Example: Draw a picture to illustrate the above formula.

Example: Find the distance between a⃗ = [2,−1] and b⃗ = [3,−6]

Fact: The Triangle Inequality
For all u⃗, v⃗ in Rn: ||u⃗+ v⃗|| ≤ ||u⃗||+ ||v⃗||
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1.2 Length and Angle

Fact: Let u⃗ and v⃗ be in Rn. The angle θ between u⃗ and v⃗ is defined to be 0◦ ≤ θ ≤ 180◦

Fact: For all u⃗, v⃗ in Rn: u⃗ · v⃗ = ||u⃗|| ||v⃗|| cos θ

Comment: In R4 and higher dimensions, this is a definition of θ.

Comment: In the special case where u⃗ and v⃗ are unit vectors, u⃗ · v⃗ gives the value of cos θ.
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1.2 Length and Angle

Example: Find the angle between u⃗ = [1,−4] and v⃗ = [2, 3]

Example: If 0◦ ≤ θ < 90◦, what is the sign of u⃗ · v⃗?
What if θ = 90◦?
What if 90◦ < θ ≤ 180◦?
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1.2 Length and Angle

Definition: Vectors u⃗ and v⃗ are orthogonal if u⃗ · v⃗ = 0.

Comment: The following statements are equivalent in 2D and 3D:
Vectors u⃗ and v⃗ are perpendicular (geometry language)
Vectors u⃗ and v⃗ are orthogonal (algebra language)

Comment: In higher dimensions it’s more appropriate to use the word orthogonal rather
than perpendicular.

Definition: The projection of v⃗ onto u⃗ is written proju⃗v⃗. This could be read as the
projection onto u⃗ of v⃗.

Example: Let’s draw a few instances of proju⃗v⃗
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1.2 Length and Angle

Fact: proju⃗v⃗ = u⃗·v⃗
||u⃗||2 u⃗

Example: Find proju⃗v⃗ for u⃗ = [1, 2] and v⃗ = [1, 3]

Fact: Given vectors u⃗, v⃗ in Rn, there is exactly one way to decompose v⃗ into two vectors
that are parallel and perpendicular to u⃗.
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1.2 Length and Angle

Example: Let u⃗ = [1, 1] and v⃗ = [4, 2]. Find vectors a⃗ and b⃗ so that v⃗ = a⃗+ b⃗, a⃗ is parallel

to u⃗, and b⃗ is perpendicular to u⃗.
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1.3 Lines and Planes

1.3 Lines and Planes

Part 1. Lines in R2

Definition: The general form of a line in R2 is ax+ by = c

Example: Consider the line 3x+ y = 1. Find two points on the line and graph the line.

Definition: A normal vector is orthogonal to a given line. It is written n⃗. Its components
are the coefficients from the general form.
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1.3 Lines and Planes

Definition: The normal form of a line in R2 is n⃗ · x⃗ = n⃗ · p⃗

where x⃗ =

[
x
y

]
and p⃗ is the vectorization of any point on the line.

Example: Describe the line 3x+ y = 1 in normal form. Show that expanding normal form
gives general form.

Definition: A direction vector for a line is d⃗ =
−→
PQ, where P and Q are any two points

on the line.

Definition: The vector form for a line in R2 is x⃗ = p⃗ + td⃗, where t represents any real
number.
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1.3 Lines and Planes

Example: Describe the line 3x + y = 1 in vector form. Show that as t varies, the line is
traced out.

Definition: The parametric form for a line in R2 is:{
x = a+ bt
y = c+ dt

Example: Describe the line 3x+ y = 1 in parametric form.
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1.3 Lines and Planes

Comment: A given line can be described in a specific form in multiple ways, for example
3x+ y = 1 and 6x+ 2y = 2 are general forms for the same line.

Example: Summarize the four forms of a line in R2
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1.3 Lines and Planes

Part 2. Lines in R3

Example: Consider the line through P = (2, 1, 12) and Q = (0,−3, 6). Describe the line
in both vector and parametric form.

Definition: A plane is an infinite flat surface.

Fact: ax+ by + cz = d is the general form for a plane in R3.

Comment: General form for a line in R3 is inconvenient so we will omit it. It would consist
of two equations, describing the intersection of two planes.

Comment: Similarly we omit normal form for a line in R3.
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1.3 Lines and Planes

Part 3. Planes in R3

Example: Consider the plane through P = (1,−1, 3) with normal

11
2

. Describe the plane
in both normal and general form.

Definition: The vector form for a plane in R3 is x⃗ = p⃗+ su⃗+ tv⃗ where:
u⃗ and v⃗ are nonparallel direction vectors
s and t represent any real numbers
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1.3 Lines and Planes

Example: Consider the plane through P = (6, 0, 0), Q = (0, 6, 0) and R = (0, 0, 3). De-
scribe the plane in vector and parametric form.

Example: Summarize the twelve descriptions
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1.3 Lines and Planes

Part 4. Geometry Problems

Example: Find the distance between B = (1, 3, 3) and the plane P : x+ y + 2z = 7
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1.3 Lines and Planes

Example: Find the distance between B = (1, 1, 0) and the line through A = (0, 1, 2) with

d⃗ =

10
1

.
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1.3 Lines and Planes

Comment: To find the distance between parallel planes, pick a point on one of the planes.
Find the distance between that point and the other plane.

Comment: To find the distance between parallel lines, pick a point on one of the lines.
Find the distance between that point and the other line.

Definition: The angle between planes is defined as the angle between their normals.

Definition: Parallel planes have parallel normals.
Perpendicular planes have perpendicular normals.
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1.4 The Cross Product

1.4 The Cross Product

The cross product u⃗× v⃗ is defined for u⃗ and v⃗ in R3.

Example: Let u⃗ = [1, 2, 1] and v⃗ = [3,−1, 4]. Calculate u⃗× v⃗.

Example: Let u⃗ = [1, 2, 1] and v⃗ = [3,−1, 4]. Calculate:
a) v⃗ × u⃗

b) (u⃗× v⃗) · u⃗

Fact: Let u⃗ and v⃗ be in R3. Then:
v⃗ × u⃗ = −(u⃗× v⃗) AND
u⃗× v⃗ is orthogonal to both u⃗ and v⃗
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1.4 The Cross Product

Fact: The vector u⃗× v⃗ is a normal for the plane containing u⃗ and v⃗. The direction of u⃗× v⃗
is determined by the Right Hand Rule.

Example: Find the general form of the plane through A = (1, 3, 6), B = (2, 1, 4) and
C = (1,−1, 5).
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1.4 The Cross Product

Comment: Recall that u⃗ · v⃗ = ||u⃗|| ||v⃗|| cos θ for u⃗, v⃗ in Rn.

Fact: If u⃗ and v⃗ are in R3 then ||u⃗× v⃗|| = ||u⃗|| ||v⃗|| sin θ.

Example: Let u⃗ and v⃗ be in R3. Consider the triangle below.
Show that the area of the triangle is 1

2
||u⃗× v⃗||

Fact: Let u⃗ and v⃗ be in R3. Consider the parallelogram below, which can be divided into
two triangles with equal area. Then:
Area(triangle)= 1

2
||u⃗× v⃗|| AND

Area(parallelogram)= ||u⃗× v⃗||
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1.4 The Cross Product

Example: Find the area of the triangle determined by u⃗ = [1, 4, 5] and v⃗ = [2, 3, 6].

35



1.4 The Cross Product

Definition: A matrix is a rectangular array of numbers. For example, A =

[
1 0 1
2 −1 3

]
Definition: The determinant of a matrix A is written detA or |A|. The determinant is
only defined for square matrices.

Fact:∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc

AND∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣ e f
h i

∣∣∣∣− b

∣∣∣∣ d f
g i

∣∣∣∣+ c

∣∣∣∣ d e
g h

∣∣∣∣
Comment: The second formula is called cofactor expansion.

Comment: Notice that the second term in the cofactor expansion has a negative sign.

Example: Compute det

1 4 6
2 1 3
0 6 7
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1.4 The Cross Product

Example: Compute

∣∣∣∣∣∣
−1 −4 6
1 1 2
1 1 8

∣∣∣∣∣∣

Notation: Let:
i⃗ = [1, 0, 0]
j⃗ = [0, 1, 0]

k⃗ = [0, 0, 1]

Fact: A second method of calculating the cross product is:

[u1, u2, u3]× [v1, v2, v3] =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
Example: Calculate [2, 1, 3]× [−6, 4, 2] using the original method.

Example: Calculate [2, 1, 3] × [−6, 4, 2] using the second method. Notice why cofactor
expansion has a negative sign on the second term.
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1.4 The Cross Product

Fact: Three geometry formulas:

1) Area(parallelogram in R3)=||u⃗× v⃗||

2) Area(parallelogram in R2)= absolute value of det

[
u1 u2

v1 v2

]

3) Volume(parallelepiped in R3)= absolute value of det

u1 u2 u3

v1 v2 v3
w1 w2 w3



38



1.4 The Cross Product

Example: Find the area of the parallelogram determined by [1, 6] and [3, 5].

Example: Do the vectors [1, 4, 7], [2, 5, 9] and [1,−2,−3] lie in a common plane?
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Chapter 2: Systems of Linear Equations
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2.1 Linear Systems

2.1 Linear Systems

Definition: A linear equation in R2 has the form ax+ by = c, where a, b and c are real
numbers.

Definition: A linear system in R2 consists of two or more linear equations. It’s often
just called a system.

Comment: Here’s an example of a system:

2x+ 6y = −14

−3x+ 3y = −15

Fact: A system can have: no solution, one unique solution or infinitely-many solutions.

Definition: A system with no solution is called an inconsistent system.
A consistent system has one solution or infinitely-many solutions. In other words, a con-
sistent system is solvable.

Definition: Consider the system:

2x+ 6y = −14

−3x+ 3y = −15

The matrix

[
2 6
−3 3

]
is called the coefficient matrix.

The matrix

[
2 6 −14
−3 3 −15

]
is called the augmented matrix.
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2.1 Linear Systems

Fact: There are three types of elementary row operations that can be performed on an
augmented matrix. These row operations don’t change the solution of the system:
1) Swap two rows
2) Multiply or divide a row by a nonzero real number
3) (Current Row) ± #(Pivot Row)

Example: Solve by elimination:

2x+ 6y = −14

−3x+ 3y = −15
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2.1 Linear Systems

Example: Solve:

2x− 3y = 8

−4x+ 6y = 20

Fact: A system has no solution if the following type of row appears while performing row
operations:
[ all zeros | nonzero]
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2.1 Linear Systems

Example: Solve:

2x− 3y = 8

−4x+ 6y = −16
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2.1 Linear Systems

Example: Solve:

x = 5

2x+ 3y = 4

3x+ 4y = 7
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2.1 Linear Systems

Definition: Back-substitution is the process of solving a sytem from the bottom equa-
tion upwards.

Example: Solve by back-substitution:

4x+ y + z = 15

3y + 5z = 29

2z = 8

Comment: Most systems can’t be solved by back-substitution.
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2.2 Solving Systems

2.2 Solving Systems

Definition: A matrix is in row-echelon form (REF) if:
any zero rows are at the bottom AND
the leading nonzero entries of each row move down and right

Comment: The following matrices are in REF:6 0 −1
0 0 3
0 0 0

 2 3 −1
0 4 7
0 0 0


Definition: An augmented matrix is in REF if the coefficient matrix is in REF.

Comment: The following matrices are in REF: 6 0 −1 1
0 0 3 2
0 0 0 3

  2 3 −1 0
0 4 7 0
0 0 0 9


Definition: One method of solving a system is Gaussian Elimination. The augmented
matrix is transformed to REF using elementary row operations. The system is then solved
by back-substitution.
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2.2 Solving Systems

Example: Solve by Gaussian Elimination:

x+ 2y + z = 6

2x+ 2y = 8

3y + z = 8

48



2.2 Solving Systems

Definition: A matrix is in reduced row-echelon form (RREF) if:
the matrix is in REF,
the leading nonzero entry in each row is 1, AND
these leading ones have zeros everywhere else in their columns

Comment: The following matrices are in RREF:1 0 −3
0 1 3
0 0 0

 1 0 0
0 1 0
0 0 1


Comment: The following matrix is in REF but not RREF:1 2 3
0 1 6
0 0 0


Definition: An augmented matrix is in RREF if the coefficient matrix is in RREF.

Comment: The following matrices are in RREF: 1 0 0 1
0 1 0 2
0 0 1 3

  1 5 0 9
0 0 1 9
0 0 0 9


Definition: Another method of solving a system is Gauss-Jordan Elimination. The
augmented matrix is transformed to RREF using elementary row operations. This is typi-
cally faster than Gaussian Elimination.
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2.2 Solving Systems

Example: Solve by Gauss-Jordan Elimination:

x+ 2y + 3z = 7

3x+ 3y + 3z = 15

5x+ 7y + 9z = 29
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2.2 Solving Systems

Example: Solve by Gauss-Jordan Elimination:

x+ y − 6z = 17

2x+ 2y − 8z = 22

3x+ 3y − 14z = 39
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2.2 Solving Systems

Example: Solve by Gauss-Jordan Elimination:

w + x+ 2y + 10z = 5

x+ y + z = 2

w + 3x+ 4y + 12z = 9
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2.2 Solving Systems

Example: Find the intersection of the two lines:

x⃗ =

−5
6
5

+ s

 2
1
−1

 and x⃗ =

−5
4
−1

+ t

11
1
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2.2 Solving Systems

Example: How many solutions does the following system have?

x+ ky = 1

kx+ y = 1

54



2.2 Solving Systems

Definition: The rank of a matrix is the number of nonzero rows in its REF or RREF.

Fact: If a system is consistent then:
rank+(# of parameters in solution)=# of variables

Example: Verify the fact for the following system:

 1 0 3 4
0 1 5 6
0 0 0 0



Example: Rephrase the fact in terms of columns of the coefficient matrix.
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2.2 Solving Systems

Comment: Notice that x⃗ =

[
0
0

]
is a solution to the following system:

x+ 2y = 0

3x+ 4y = 0

Definition: A system whose constants are all zero is called a homogeneous system. The
solution x⃗ = 0⃗ is called the trivial solution.

Fact: A homogeneous system always has at least one solution: x⃗ = 0⃗.

Example: Consider a homogeneous system with more variables than equations. How many
solutions does the system have?
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2.3 Span and Linear Independence

2.3 Span and Linear Independence

Example: Is

[
8

−10

]
a linear combination of

[
−1
2

]
and

[
2
−3

]
?
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2.3 Span and Linear Independence

Example: Is w⃗ =

11
2

 a linear combination of u⃗ =

10
1

 and v⃗ =

13
0

?

58



2.3 Span and Linear Independence

Fact: The vector b⃗ is a linear combination of the columns of matrix A if and only if

the system
[
A| b⃗

]
is consistent.

Definition: The span of u⃗1, u⃗2, . . . , u⃗n is the set of all linear combinations of u⃗1, u⃗2, . . . , u⃗n.

Comment: a) span(⃗a, b⃗)= {⃗0, 3a⃗, − 7⃗b, 2a⃗+ 5⃗b, . . .}

b) span(u⃗1, u⃗2, . . . , u⃗n)= {c1u⃗1 + c2u⃗2 + · · ·+ cnu⃗n}
where c1, c2, . . . , cn are any real numbers.

Fact: The zero vector 0⃗ is in span(u⃗1, u⃗2, . . . , u⃗n) because 0u⃗1 + 0u⃗2 + · · ·+ 0u⃗n = 0⃗.
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2.3 Span and Linear Independence

Example: Describe each span geometrically:

a) span(

[
1
1

]
,

[
−3
−3

]
)

b) span(

[
1
1

]
,

[
1
2

]
)

c) span(

 1
0
−1

 ,

−4
0
4

)

d) span(

16
0

 ,

23
0

)
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2.3 Span and Linear Independence

Example: Find an equation for span(

10
1

 ,

13
6

). Give your answer in any form.
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2.3 Span and Linear Independence

Example: a) Show that span(

[
1
3

]
,

[
2
1

]
)= R2.

b) Write

[
a
b

]
as a linear combination of

[
1
3

]
and

[
2
1

]
.
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2.3 Span and Linear Independence

Comment: To decide if a system is consistent, reduce it to REF.
To solve a system, reduce it to RREF.

Definition: Given {v⃗1, v⃗2, . . . , v⃗n}, consider solutions to c1v⃗1+ c2v⃗2+ . . .+ cnv⃗n = 0⃗. If the
only solution is c1 = c2 = . . . = cn = 0 then the set of vectors is linearly independent.
If there are solutions other than c1 = c2 = . . . = cn = 0 then the set of vectors is linearly
dependent.

Comment: The two sentences below mean the same thing:
Vectors v⃗1, v⃗2, . . . , v⃗n are linearly independent.
The set {v⃗1, v⃗2, . . . , v⃗n} is linearly independent.

Comment: The two sentences below mean the same thing:
Vectors v⃗1, v⃗2, . . . , v⃗n are linearly dependent.
The set {v⃗1, v⃗2, . . . , v⃗n} is linearly dependent.
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2.3 Span and Linear Independence

Comment: a) {
[
0
1

]
,

[
2
4

]
,

[
2
7

]
} is linearly dependent.

b)

[
1
0

]
,

[
1
1

]
,

[
3
3

]
are linearly dependent.

c)

[
0
0

]
and

[
1
2

]
are linearly dependent.
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2.3 Span and Linear Independence

Example: Are

11
0

 ,

 1
0
−1

 and

00
2

 linearly independent?
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2.3 Span and Linear Independence

Fact: A set of more than n vectors in Rn is linearly dependent. For example three vectors
in R2 are guaranteed to be linearly dependent.

Example: Let’s explore why this fact is true.
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2.3 Span and Linear Independence

Example: Find a linear dependence relationship (linear dependency) involving[
1
6

]
,

[
2
6

]
and

[
4
30

]
. Start by letting c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗.
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2.3 Span and Linear Independence

Example: Find a linear dependence relationship (linear dependency) involving[
1
6

]
,

[
2
6

]
and

[
4
30

]
. Start by putting the vectors into the rows of a matrix.
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2.3 Span and Linear Independence

Comment: Compare the methods used in the last two examples. The first method gives
the general solution, while the second method gives one particular solution.

Comment: Preview of Section 3.5:
We’ll consider objects like lines or planes through the origin, and find a set of direction
vectors containing the minimum number of vectors. This discussion will require knowledge
of span and linear independence.
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2.4 Applications of Linear Systems

2.4 Applications of Linear Systems

Example: Find the parabola y = ax2 + bx + c that passes through (1, 12), (−1, 18) and
(2, 30).
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2.4 Applications of Linear Systems

Example: Balance NH3 +O2 → N2 +H2O
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2.4 Applications of Linear Systems

Example: Consider the following network of one-way streets. The average number of
vehicles per hour through intersections A,B,C,D was collected from historical data.
a) Find the flows w, x, y, z.
b) If the solution has a parameter then specify the possible values of the parameter.
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2.4 Applications of Linear Systems

Example: Find all possible combinations of 15 coins (nickels, dimes or quarters)
that total $ 2.50.
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Chapter 3: Matrices
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3.1 Matrix Operations

3.1 Matrix Operations

Definition: The size of a matrix is given by (# of rows)×(# of columns).

For example

[
1 2 3
4 5 6

]
is a 2× 3 matrix.

Definition: The entry of a matrix A is written aij or [A]ij, where i and j are the row
index and the column index respectively. For the matrix above a23 = 6 or [A]23 = 6.

Definition: A square matrix has size n× n.

Definition: An identity matrix is square with ones along the main diagonal and zeros
elsewhere. It can be written I, or In if we want to emphasize its size.

For example I2 =

[
1 0
0 1

]
and I3 =

1 0 0
0 1 0
0 0 1

.
Definition: A diagonal matrix is square and all the entries off the main diagonal are zero.

For example D =

[
a 0
0 b

]
or D =

a 0 0
0 b 0
0 0 c

.
Example: Let A =

[
1 6 1
−2 −2 4

]
and B =

[
1 0 −3
1 6 9

]
. Find:

a) A+B

b) 3A
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3.1 Matrix Operations

Comment: A+B is undefined if A and B have different sizes.

Definition: The process of multiplying a matrix by a real number is called
scalar multiplication.

Example: Let A =

[
1 6 1
−2 −2 4

]
and B =

[
1 0 −3
1 6 9

]
. Find A− 3B.

Definition: The transpose of A, written AT , interchanges the rows and columns of A.
The matrix A is symmetric if AT = A.

Example: Calculate the transpose and state if the matrix is symmetric.

a) A =

1 1 4
1 6 3
4 3 −1



b) B =

[
1 2 1
0 6 1

]
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3.1 Matrix Operations

Fact: To multiply two matrices:

AB =


r1 · c1 r1 · c2 . . . r1 · cn
r2 · c1 r2 · c2 . . . r2 · cn
. . . . . . . . . . . .

rn · c1 rn · c2 . . . rn · cn


where ri is row i of matrix A and cj is column j of matrix B.

Example: Find AB where A =

[
1 4
−2 1

]
and B =

[
1 1 3
0 2 6

]
.

Example: Let’s consider the sizes of A and B in the example above.
Which two numbers must be equal to make AB defined?
Which two numbers predict the size of AB?

Example: Let A be a 2× 3 matrix and let B be a 3× 1 matrix. Calculate the sizes of AB
and BA.
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3.1 Matrix Operations

Fact: AB ̸= BA in general.

Example: Find BC and CB where B =

1 2
3 4
5 6

 and C =

[
1 −1
2 4

]
.

Example: Expand the following:[
1 2
3 4

] [
x
y

]
=

[
5
6

]

Comment: Matrix multiplication was reverse-engineered to solve systems of equations.

Fact: A system of equations can be written as Ax⃗ = b⃗ where:
A is the coefficient matrix
x⃗ is the vector of variables, written as a column
b⃗ is the vector of constants, written as a column
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3.1 Matrix Operations

Example: Consider the data below:
Al Bob

Test1 Mark 50 60
Test2 Mark 90 80
Exam Mark 75 70

Test1 Weight Test2 Weight Exam Weight
0.2 0.2 0.6

Let A be a matrix containing the course marks for the two students. Let B be a matrix
containing the weightings of the coursework. Find Al and Bob’s final grades using a matrix
multiplication.
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3.1 Matrix Operations

Definition: The outer product expansion of AB is:
AB = A1B1 + A2B2 + . . .+ AnBn

where Ai is column i of A and Bj is row j of B.

Comment: Normal matrix multiplication involves rows of the first matrix and columns
of the second matrix.
The outer product expansion involves columns of the first matrix and rows of the second
matrix.

Example: Find the outer product expansion of AB given:

A =

[
1 3
0 −2

]
and B =

[
1 7
4 2

]
.

Example: Confirm the result in the previous example using normal matrix multiplication.

Comment: The outer product expansion will be used further in Section 5.4.
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3.1 Matrix Operations

Definition: The expression An means multiply A with itself n times. For example:
A2 = AA
A3 = A2A or A3 = AA2 or A3 = AAA

Example: Express A12 as the cube of a matrix.

Example: Compute A2 for A =

[
1 −1
2 3

]

Fact: Recall that I is the identity matrix. For any matrix A:
AI = A and IA = A

Example: Let A =

[
1 2 3
4 5 6

]
. Confirm that AI = A and IA = A.
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3.1 Matrix Operations

Example: Simplify B2018 given that B3 = I.

Definition: Let O be the zero matrix. For example O=

[
0 0
0 0

]
or O=

[
0 0 0
0 0 0

]
etc.

Example: Find a 2× 2 matrix A so that A2 =O but A ̸=O.
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3.2 Matrix Algebra

3.2 Matrix Algebra

Example: Is

[
0 1
4 2

]
a linear combination of

[
0 1
6 2

]
and

[
0 1
7 2

]
?
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3.2 Matrix Algebra

Example: Find the general form of span(

[
1 0
2 0

]
,

[
3 0
6 1

]
,

[
2 1
4 5

]
).

84



3.2 Matrix Algebra

Comment: The general form of the span allows us to quickly identify which matrices are

in the span. For example,

[
1 7
2 30

]
is in the span and

[
1 7
3 30

]
is not.

Example: Find the general form of span(

[
1 0
2 0

]
,

[
2 1
4 5

]
).
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3.2 Matrix Algebra

Example: Are

[
1 0
2 0

]
,

[
3 0
6 1

]
and

[
2 1
4 5

]
linearly independent?
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3.2 Matrix Algebra

Definition: Matrices A and B commute if AB = BA.

Example: Let A =

[
2 3
1 4

]
and B =

[
1 9
3 7

]
. Do A and B commute?

We’re going to look at six properties of matrices.

Property 1: For any matrices A,B and C with compatible sizes:
(AB)C = A(BC)

Example: Verify Property 1 for A =
[
1 3

]
, B =

[
2
−4

]
and C =

[
1 6

]
.
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3.2 Matrix Algebra

Property 2: For any matrices A,B and C with compatible sizes:
A(B + C) = AB + AC

Example: Verify Property 2 for A =

[
1 2
3 4

]
, B =

[
5
6

]
and C =

[
1
2

]
.

Properties 3 and 4: For any matrix A:
AI = A and IA = A

Property 5: For any matrices A and B with compatible sizes:
(A±B)T = AT ±BT

Example: Break Property 5 into two statements.

Example: Confirm that (A−B)T = AT −BT for A =

[
1 2
1 3

]
and B =

[
1 4
1 2

]
.
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3.2 Matrix Algebra

Property 6: For any matrices A1, A2, . . . , An with compatible sizes:
(A1A2 · · ·An)

T = AT
n · · ·AT

2A
T
1

Example: Confirm that (AB)T = BTAT for A =

[
1 2
1 3

]
and B =

[
1 4
1 2

]
.
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3.2 Matrix Algebra

Example: Expand (A+B)2 and simplify.

Example: Show that ATA is symmetric.
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3.3 The Inverse of a Matrix

3.3 The Inverse of a Matrix

Definition: An n×n matrix A is invertible if there exists a matrix A−1 so that AA−1 = I
and A−1A = I.

Definition: The matrix A−1 is called the inverse of A.

Example: Let A =

[
2 1
5 3

]
. Confirm that A−1 =

[
3 −1
−5 2

]
.

Comment: 1) Not every square matrix is invertible.
2) If A−1 exists then it is unique.
3) AA−1 = I if and only if A−1A = I, so we only need to check one property.
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3.3 The Inverse of a Matrix

Definition: If A =

[
a b
c d

]
then the determinant of A is detA = ad− bc.

Fact: If A is a 2× 2 matrix then:

A−1 =

 1
detA

[
d −b
−c a

]
, if detA ̸= 0

undefined, if detA = 0

Example: Find A−1:

a) A =

[
1 −4
7 2

]

b) A =

[
3 −2
−9 6

]
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3.3 The Inverse of a Matrix

Fact: If A−1 exists then the system of equations Ax⃗ = b⃗ has a unique solution: x⃗ = A−1⃗b.

Example: Let’s explore why the above fact is true.

Example: Use A−1 to solve:

4x− 5y = −6

−5x+ 6y = 7
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3.3 The Inverse of a Matrix

Fact: To find A−1 for an n × n matrix we form the augmented matrix [A|I]. We perform
row operations to produce I on the left side. The resulting matrix on the right side will be
A−1.

Example: Find A−1 for A =

2 5 1
1 2 2
2 2 2

.
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3.3 The Inverse of a Matrix

Comment: By transforming A into I we are “undoing” A. The matrix on the right side
will be the matrix that “undoes” A, that is A−1.

Example: Find A−1 for A =

1 1 5
1 2 6
2 3 11

.

Fact: Suppose a zero row appears on the left side while reducing [A|I]. Then A−1 does not
exist.
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3.3 The Inverse of a Matrix

We’ll look at three properties of A−1.

Property 1: If A−1 exists then (A−1)−1 = A.

Property 2: (AT )−1 = (A−1)T for any matrix A.

Example: Verify Property 2 for A =

[
1 2
3 7

]
.

Property 3: For any matrices A1, A2, . . . , An with compatible sizes:
(A1A2 · · ·An)

−1 = A−1
n · · ·A−1

2 A−1
1 .

Comment: In particular this means that (AB)−1 = B−1A−1.

Comment: Let Operation A represent putting on your socks. Let Operation B represent
putting on your shoes. To reverse this sequence we have to undo the operations and reverse
the order of operations. We could express this in matrix terms as (AB)−1 = B−1A−1.

Comment: Consider Property 3 with all n matrices equal to A. The statement becomes
(An)−1 = (A−1)n. This means we can write A−n without confusion.
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3.3 The Inverse of a Matrix

Example: Let A =

[
1 2
3 4

]
. Find A−2.

Example: Let A,B andX all be invertible n×nmatrices. Solve forX given (AX)−1 = BA.
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3.3 The Inverse of a Matrix

Definition: An elementary matrix represents a row operation.
To identify which operation, consider how I has been transformed. For example:

E =

[
2 0
0 1

]
represents 2R1

E =

[
1 0
0 −4

]
represents -4R2

E =

[
1 0
3 1

]
represents R2 + 3R1

E =

[
1 −5
0 1

]
represents R1 − 5R2

E =

[
0 1
1 0

]
represents R1 ↔ R2

E =

1 0 0
0 0 1
0 1 0

 represents R2 ↔ R3

E =

1 0 0
0 1 6
0 0 1

 represents R2 + 6R3
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3.3 The Inverse of a Matrix

Example: State the row operation that is represented by the elementary matrix. Then
find the inverse matrix.

a) E1 =

[
3 0
0 1

]

b) E2 =

[
0 1
1 0

]

c) E3 =

[
1 0
2 1

]
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3.3 The Inverse of a Matrix

Fact: An elementary matrix acts on the left of a matrix. When an elementary matrix is
multiplied on the left of A, it performs the associated row operation on A. For example:[
2 0
0 1

] [
a b
c d

]
=

[
2a 2b
c d

]
.

Example: Let A =

[
2 1
0 1

]
. Write A and A−1 as a product of elementary matrices.
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3.3 The Inverse of a Matrix

Example: Let A =

[
2 4
1 1

]
. Write A and A−1 as a product of elementary matrices.
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3.3 The Inverse of a Matrix

The Fundamental Theorem of Invertible Matrices
Let A be an n× n matrix. The following statements are equivalent:
a) A is invertible.
b) Ax = b has a unique solution for every b in Rn.
c) Ax = 0 has only the trivial solution.
d) The RREF of A is I.
e) A is a product of elementary matrices.

Comment: Consider the Fundamental Theorem of Invertible Matrices. For a given n× n
matrix, the five statements are all true or all false.
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3.3 The Inverse of a Matrix

Example: Consider the Fundamental Theorem of Invertible Matrices. Which of the five
statements are true for A?

a) A =

[
1 4
6 9

]

b) A =

[
1 2
3 6

]
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3.4 LU Factorization

3.4 LU Factorization

Definition: An upper triangular matrix is a square matrix with zeros below the main

diagonal. An example is

1 2 3
0 4 5
0 0 6

.
Definition: A lower triangular matrix is a square matrix with zeros above the main

diagonal. An example is

1 0 0
2 3 0
4 5 6

.
Definition: A unit lower triangular matrix is lower triangular and has ones on the

main diagonal. An example is

1 0 0
2 1 0
4 5 1

.
Definition: The LU Factorization of a square matrix A is A = LU , where L is a unit lower
triangular matrix and U is an upper triangular matrix.

Comment: Here is an LU Factorization:2 1 1
4 4 3
8 10 13

 =

1 0 0
2 1 0
4 3 1

2 1 1
0 2 1
0 0 6
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3.4 LU Factorization

Example: Solve the system below using the LU Factorization on the previous page.2 1 1
4 4 3
8 10 13

 x⃗ =

 1
2
−8
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3.4 LU Factorization

Fact: To find the LU Factorization of a matrix A:
Transform A to REF using only: (current row)-k(pivot row).
The matrix L has the k-values in the appropriate positions.
The matrix U is the REF.

Fact: The matrix A has an LU Factorization if and only if no row swaps are required to
transform A to REF.

Example: Find the LU Factorization of

2 1 1
4 4 3
8 10 13
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3.4 LU Factorization

Example: Let’s explore why the method to find the LU Factorization works.
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3.4 LU Factorization

Example: Find the LU Factorization of A and use it to solve: 2 −4 0
3 −1 4
−1 2 2

 x⃗ =

 2
0
−5
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3.4 LU Factorization

Example Continued...
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3.5 Subspaces and Basis

3.5 Subspaces and Basis

Definition: A subspace of Rn is the span of one or more vectors in Rn.

Comment: a) A line through the origin in R2 is a subspace of R2.

b) A line through the origin in R3 is a subspace of R3.

c) A plane through the origin in R3 is a subspace of R3.

Example: Is the following set of vectors a subspace of R3?

S = {

xy
z

 | 3x+ 4y + z = 0}
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3.5 Subspaces and Basis

Example: Is the following set of vectors a subspace of R3?

S = {

xy
z

 | z = x+ 1}

Example: Is the following set of vectors a subspace of R2?

S = {
[
x
y

]
| y = 0}
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3.5 Subspaces and Basis

Let’s define three subspaces associated with a matrix A.

Definition: The rowspace of A is the span of the rows of A, written row(A).
The columnspace of A is the span of the columns of A, written col(A).
The nullspace of A is {x⃗| Ax⃗ = 0⃗}, written null(A).

Example: Let A =

[
1 2 0
1 2 1

]
.

a) Is

[
6
10

]
in col(A)?

b) Is [1, 2, 5] in row(A)?
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3.5 Subspaces and Basis

c) Is

12
3

 in null(A)?

Definition: A set of vectors B is a basis for a subspace S if:
span(B)=S and B is linearly independent.

Comment: Let’s rephrase this. A set B is a basis for a subspace S if:
B is a set of direction vectors for S containing the minimum number of vectors.

Comment: a) {
[
1
0

]
,

[
0
1

]
} is a basis for R2.

b) {
[
3
4

]
,

[
5
6

]
} is a basis for R2.

c) {
[
3
4

]
,

[
6
8

]
} is not a basis for R2.

d) {
[
3
4

]
} is not a basis for R2.

e) {
[
3
4

]
,

[
5
6

]
,

[
1
0

]
} is not a basis for R2.
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3.5 Subspaces and Basis

Example: Let A =

2 3 7
4 7 10
8 17 8

. Find a basis for:

a) row(A)

b) col(A)

Comment: In general, performing a row operation changes the columnspace of a matrix.
We cannot use the nonzero columns of the REF/RREF to form a basis for col(A).
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3.5 Subspaces and Basis

Example: Let A =

2 3 7
4 7 10
8 17 8

. Find a basis for row(A) consisting of rows of A.

Note: This is different from part a) of the previous example, because that answer was not
phrased in terms of rows of A.
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3.5 Subspaces and Basis

Example: Let A =

[
1 4 6
2 8 12

]
. Find a basis for null(A).
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3.5 Subspaces and Basis

Example: Find a basis for span(

11
0

 ,

12
6

 ,

 1
5
24

).
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3.5 Subspaces and Basis

Definition: Given a basis B = {v⃗1, v⃗2, . . . , v⃗n} for Rn,
the coordinate vector of v⃗ with respect to B is

[v⃗]B =


c1
c2
. . .
cn

 where v⃗ = c1v⃗1 + c2v⃗2 + . . .+ cnv⃗n.

Example: Find [v⃗]B for B = {

12
3

 ,

15
6

 ,

11
4

} and v⃗ =

 5
15
28

.
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3.5 Subspaces and Basis

Definition: The dimension of a subspace S is the number of vectors in a basis for S. It’s
written dim(S).

Comment: a) The standard basis for R3 = {

10
0

 ,

01
0

 ,

00
1

}. Therefore dim R3 = 3.

b) dim Rn = n
c) dim(plane through the origin in Rn)= 2
d) dim(line through the origin in Rn)=1

Definition: The rank of a matrix is the number of nonzero rows in its REF or RREF.

Comment: For any matrix A: rank(A)=dim(row(A))=dim(col(A)).

Definition: The nullity of a matrix A is the number of parameters in the solution to
Ax⃗ = 0⃗. In other words, nullity(A)=dim(null(A)).
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3.5 Subspaces and Basis

Example: Let A =

1 5 1 1
0 0 1 1
0 0 1 2

. Find rank(A) and nullity(A).

Fact: For any matrix A: rank(A)+nullity(A)= number of columns in A.

Example: Let’s phrase this fact in terms of the columns of A.
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3.5 Subspaces and Basis

The Fundamental Theorem of Invertible Matrices
Let A be an n× n matrix. The following statements are equivalent:
a) A is invertible.
b) Ax = b has a unique solution for every b in Rn.
c) Ax = 0 has only the trivial solution.
d) The RREF of A is I.
e) A is a product of elementary matrices.
f) rank(A) = n.
g) nullity(A) = 0.
h) The columns of A are linearly independent.
i) The span of the columns of A is Rn.
j) The columns of A form a basis for Rn.
k) The rows of A are linearly independent.
l) The span of the rows of A is Rn.
m) The rows of A form a basis for Rn.
n) det A ̸= 0.
o) 0 is not an eigenvalue of A.

Comment: Consider the Fundamental Theorem of Invertible Matrices. For a given n× n
matrix, the fifteen statements are all true or all false.
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3.5 Subspaces and Basis

Example: Is {

12
3

 ,

15
6

 ,

11
4

} a basis for R3?
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3.6 Linear Transformations

3.6 Linear Transformations

Definition: A transformation is an operation that turns a vector into another vector.

Example: The transformation T : R2 → R2 rotates a vector by 90◦ counterclockwise.

Graph the vector

[
2
1

]
before and after the transformation.

Definition: The vector

[
−1
2

]
is called the image of

[
2
1

]
under T .

We can write T (

[
2
1

]
) =

[
−1
2

]
or T

[
2
1

]
=

[
−1
2

]
.

Definition: The matrix transformation TA multiplies a vector on the left by matrix A.
In other words, TA(x⃗) = Ax⃗.
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3.6 Linear Transformations

Example: a) Let A =

[
2 0 1
−1 1 −3

]
. Find TA(

xy
z

).

b) Find A given TA(

[
x
y

]
) =

 2x+ y
x− y
3x+ 3y

.
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3.6 Linear Transformations

Definition: A transformation T : Rn → Rm is linear if:
T (u⃗+ v⃗) = T (u⃗) + T (v⃗) for all vectors u⃗ and v⃗ in Rn and
T (cu⃗) = cT (u⃗) for all real numbers c and all vectors u⃗ in Rn.

Fact: The transformation T is linear if and only if T is a matrix transformation.

Example: Show that T is linear given T (

[
x
y

]
) =

[
y
x

]
.

Example: Show that T is not linear given T (

[
x
y

]
) =

[
y

1 + x

]
.
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3.6 Linear Transformations

Definition: The standard matrix for T is the matrix that performs T . It’s written [T ].

Fact: Let T : R2 → Rm be a linear transformation. To calculate [T ]:

Place T (

[
1
0

]
) in the first column and place T (

[
0
1

]
) in the second column.

In other words, [T ] =

[
T (

[
1
0

]
) T (

[
0
1

]
)

]
.

Fact: Let T : Rn → Rm be a linear transformation. Then:

[T ] =

T (

1
0
0
. . .
0

) T (


0
1
0
. . .
0

) . . . T (


0
0
0
. . .
1

)
.

Comment: The formula for [T ] works because T is linear.
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3.6 Linear Transformations

Example: Let T : R2 → R2 be the transformation that reflects a vector in the y-axis.
Find:

a) [T ]

b) T (

[
x
y

]
)

Example: Let T : R2 → R2 be the transformation that reflects a vector in the line y = x.
Find [T ].
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3.6 Linear Transformations

Example: Let T : R2 → R2 be the transformation that rotates a vector
by angle θ (counterclockwise). Find [T ].

Example: Rotate

[
1
1

]
by 30◦ clockwise.
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3.6 Linear Transformations

Example: Let T : R2 → R2 be the transformation that projects a vector

on the line l through the origin with direction vector d⃗ =

[
a
b

]
. Find [T ].

Comment: It’s recommended that you know the following two standard matrices:

Rotation by angle θ (counterclockwise): [T ] =

[
cos θ − sin θ
sin θ cos θ

]
Projection onto the line x⃗ = t

[
a
b

]
: [T ] = 1

a2+b2

[
a2 ab
ab b2

]
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3.6 Linear Transformations

Definition: Suppose we apply T1 then T2 to x⃗. This is a composition of transformations.
It can be written T2(T1(x⃗)) or (T2 ◦ T1)(x⃗).
We calculate it as [T2] [T1] x⃗.

Example: Let T (

xy
z

) = [
2x
−y

]
. Let S : R2 → R2 be a rotation by 45◦. Find [S ◦ T ].
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3.6 Linear Transformations

Definition: Suppose T : Rn → Rn.
The inverse of T is a transformation T−1 : Rn → Rn such that:
T−1(T (x⃗)) = x⃗ and T (T−1(x⃗)) = x⃗ for all vectors x⃗ in Rn.

Comment: Note that T−1 is only defined when [T ] is invertible.

Fact: The standard matrix for T−1 is the inverse of the standard matrix for T .

Example: Rewrite this fact using appropriate notation.

Example: Let T : R2 → R2 be a rotation by −30◦. Find [T−1].
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3.6 Linear Transformations

Example: Let T be a linear transformation from R3 to R2. Suppose:

v⃗1 =

11
0

 and T (v⃗1) =

[
−5
8

]
,

v⃗2 =

10
1

 and T (v⃗2) =

[
2
2

]
, and

v⃗3 =

01
1

 and T (v⃗3) =

[
−1
3

]
.

Find T (

73
6

).
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Chapter 4: Eigenvalues and Eigenvectors
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4.1 Eigenvalues and Eigenvectors, 2× 2 Matrices

4.1 Eigenvalues and Eigenvectors, 2× 2 Matrices

Definition: Let A be an n× n matrix. Suppose Ax⃗ = λx⃗ for some vector x⃗ ̸= 0⃗ and some
real number λ. Then λ is an eigenvalue of A and x⃗ is an eigenvector of A.

Example: Show that x⃗ =

[
1
−1

]
is an eigenvector of A =

[
1 −3
1 5

]
.

Comment: We say that x⃗ =

[
1
−1

]
is an eigenvector of A corresponding to eigenvalue λ = 4.

Comment: Note that A0⃗ = λ0⃗ is trivial. Therefore the zero vector is never considered to
be an eigenvector.
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4.1 Eigenvalues and Eigenvectors, 2× 2 Matrices

Example: Find all eigenvectors of A =

[
3 −2
−3 4

]
corresponding to λ = 6.
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4.1 Eigenvalues and Eigenvectors, 2× 2 Matrices

Fact: To find all the eigenvectors corresponding to eigenvalue λ:
Solve the system [A− λI | 0⃗]. Remember to exclude x⃗ = 0⃗.

Definition: The eigenspace Eλ is the set of all eigenvectors of A corresponding to eigen-
value λ, plus the zero vector. It’s a subspace of Rn.

Example: Find a basis for E3 given A =

 4 1 −2
−3 0 6
2 2 −1

.

136



4.1 Eigenvalues and Eigenvectors, 2× 2 Matrices

Example: Find a basis for E0 given A =

4 1 −3
0 0 2
0 0 −3

.
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4.1 Eigenvalues and Eigenvectors, 2× 2 Matrices

Fact: Let B be an n×n matrix. The system Bx⃗ = 0⃗ has nontrivial solutions exactly when
detB = 0. (This follows from the Fundamental Theorem of Invertible Matrices).

Fact: To find all the eigenvalues of A: Solve the equation det(A− λI) = 0.

Example: Let’s understand why solving det(A− λI) = 0 gives the eigenvalues.

Example: Find all the eigenvalues of A =

[
4 −2
5 −7

]
.
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4.1 Eigenvalues and Eigenvectors, 2× 2 Matrices

Example: Find a basis for E−6 given A =

[
4 −2
5 −7

]
.

Comment:

To find eigenvalues: Solve the equation det(A− λI) = 0.

To find eigenvectors: Solve the system [A− λI | 0⃗]. Remember to exclude x⃗ = 0⃗.
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4.1 Eigenvalues and Eigenvectors, 2× 2 Matrices

Example: Let A =

[
−2 0
0 1

]
. Find the eigenvectors and eigenvalues geometrically.
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4.2 Determinants

4.2 Determinants

Comment: Recall that the determinant of A is written detA or |A|. It’s only defined for
square matrices.

Fact: The cofactor expansion from Section 1.4 generalizes according to the following rules:

We can expand along any row or column.

The sign associated with each term follows the checkerboard pattern:

+ − + . . .
− + − . . .
. . . . . . . . . . . .

.

Example: Find detA by cofactor expansion along the second column. Calculate it again

by cofactor expansion along the third row. Let A =

4 1 6
1 2 3
6 0 7

.
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4.2 Determinants

Example: Calculate |A| for A =


1 6 2 3
0 0 0 4
2 1 1 6
2 0 5 7

.

Example: In this example we’ll illustrate the Quick Method for 3 × 3 Determinants.

Calculate detA using the Quick Method. Let A =

1 4 9
2 −2 6
1 0 4

.

Comment: The Quick Method only applies for 3× 3 matrices.
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4.2 Determinants

Fact: If A is upper triangular, lower triangular or diagonal then detA is the product of the

diagonal entries. For example det

2 9 13
0 −1 1
0 0 4

 = −8.

Example: Let’s understand why by calculating det

2 9 13
0 −1 1
0 0 4

.

Fact: How Row Operations Change the Determinant:

Ri ± kRj does not change the determinant.

Ri ↔ Rj changes the sign of the determinant.

We can factor any row, for example det

[
3 6
1 5

]
= 3det

[
1 2
1 5

]
.
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4.2 Determinants

Example: Calculate the determinant by reducing the matrix to REF.

Let A =


1 −2 1 9
2 1 3 3
3 1 4 5
0 1 1 6

.

Comment: In general detA ̸= det(REF of A).
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4.2 Determinants

Fact: An n× n matrix A is invertible if and only if detA ̸= 0.

Fact: Properties of detA:

1) detA−1 = 1
detA

(if detA ̸= 0)

2) detAB = detA · detB

3) det kA = kn detA (where A is n× n)

4) detAT = detA

Comment: To illustrate Property 3:

det

[
7a 7b
7c 7d

]
= 72 det

[
a b
c d

]
.

det

5a 5b 5c
5d 5e 5f
5g 5h 5i

 = 53 det

a b c
d e f
g h i

.
Comment: Note that det(A+B) ̸= detA+ detB in general.

Example: Let detA ̸= 0. Prove Property 1.
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4.2 Determinants

Fact: Cramer’s Rule
Let A be an n× n matrix. When detA ̸= 0, the system Ax⃗ = b⃗ has a unique solution:
i-th variable= |Ai|

|A|

where Ai = A with the i-th column replaced by b⃗.

Example: Solve using Cramer’s Rule:

2x+ 3y + 2z = −11

3x + 5z = 23

4x+ y + z = 1
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4.2 Determinants

Definition: A cofactor is the signed determinant in the cofactor expansion that’s associ-
ated with a matrix entry. It’s written Cij.

The sign is given by the checkerboard pattern:

+ − + . . .
− + − . . .
. . . . . . . . . . . .

.

Example: Let A =

1 −2 1
1 0 3
1 1 5

.
Calculate the cofactors C11, C12 and C32.

Definition: The cofactor matrix is the matrix whose entries are the cofactors of A.

Example: Find the cofactor matrix for A =

1 −2 1
1 0 3
1 1 5

.
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4.2 Determinants

Definition: The adjoint of A is the transpose of the cofactor matrix. It’s written adj(A).

Fact: For an n× n matrix with |A| ≠ 0:
A−1 = 1

|A| adj(A).

Example: Let A =

2 2 2
2 1 2
3 −3 4

. Find A−1 using the adjoint formula.
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4.2 Determinants

Example: Let A =

[
a b
c d

]
. Find A−1 using the adjoint formula.
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4.3 Eigenvalues and Eigenvectors, n× n Matrices

4.3 Eigenvalues and Eigenvectors, n× n Matrices

Example: Find all the eigenvalues of A =

1 1 2
0 −4 3
0 0 7

.

Fact: The eigenvalues of an upper triangular, lower triangular or diagonal matrix are the
diagonal entries.

Integer Roots Theorem
If a polynomial has integer coefficients and the leading coefficient is 1 then any integer roots
divide the constant.
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4.3 Eigenvalues and Eigenvectors, n× n Matrices

Example: Find all the eigenvalues of A =

3 −1 1
7 −5 1
6 −6 2

.
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4.3 Eigenvalues and Eigenvectors, n× n Matrices

Example Continued...
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4.3 Eigenvalues and Eigenvectors, n× n Matrices

Definition: The characteristic equation of A is |A− λI| = 0.
The algebraic multiplicity of an eigenvalue λi is the exponent on (λi − λ)
in the characteristic equation.
The geometric multiplicity of an eigenvalue is the number of basis vectors
in the corresponding eigenspace.

Example: Let A have characteristic equation (7− λ)3(9− λ)2 = 0. A basis for E7 consists
of one vector. A basis for E9 consists of two vectors. Find the eigenvalues of A and state
their algebraic multiplicities and their geometric multiplicities.

Fact: For each eigenvalue:
1 ≤ geometric multiplicity ≤ algebraic multiplicity

Comment: If a matrix has
(geometric multiplicity) = (algebraic multiplicity) for all its eigenvalues
then the matrix has a nice property.
We’ll see the details in Section 4.4.
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4.3 Eigenvalues and Eigenvectors, n× n Matrices

We’ll look at five properties of eigenvalues.

Property 1: A is invertible if and only if 0 is not an eigenvalue of A.

Example: Prove Property 1.
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4.3 Eigenvalues and Eigenvectors, n× n Matrices

Property 2: If A is invertible and Ax⃗ = λx⃗ then x⃗ is an eigenvector of A−1 with eigenvalue 1
λ
.

Example: Prove Property 2.

Property 3: Let n be a non-negative integer. If Ax⃗ = λx⃗ then Anx⃗ = λnx⃗.

Example: Prove Property 3.
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4.3 Eigenvalues and Eigenvectors, n× n Matrices

Property 4: If Ax⃗ = λx⃗ then x⃗ is an eigenvector of A+ kI with eigenvalue λ+ k.

Example: Prove Property 4.

Property 5: Let n be a non-negative integer.
Suppose A has eigenvectors x⃗1, x⃗2, . . . , x⃗m corresponding to eigenvalues λ1, λ2, . . . , λm. Then:
An(c1x⃗1 + c2x⃗2 + . . .+ cmx⃗m) = c1λ

n
1 x⃗1 + c2λ

n
2 x⃗2 + . . .+ cmλ

n
mx⃗m.

Comment: This is a generalization of Property 3.
Note that the coefficients are preserved.
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4.3 Eigenvalues and Eigenvectors, n× n Matrices

Example: Suppose A has:

eigenvalue λ1 = −2 corresponding to eigenvector v⃗1 =

[
1
2

]
and

eigenvalue λ2 = 3 corresponding to eigenvector v⃗2 =

[
2
−1

]
.

Calculate A3

[
11
2

]
.
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4.3 Eigenvalues and Eigenvectors, n× n Matrices

Example: Suppose A has the eigenvalue 3 corresponding to the eigenvector

[
2
1

]
.

List one eigenvector and one eigenvalue for each of the following matrices: A−1, A4, A+ 2I.
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4.4 Diagonalization

4.4 Diagonalization

Definition: An n × n matrix A is diagonalizable if there exist an invertible matrix P
and a diagonal matrix D so that P−1AP = D.

Fact: To find P we find a basis for each eigenspace of A. The basis vectors go into the
columns of P . The matrix D has the eigenvalues on the diagonal, in the same order as P .

Example: Let A =

2 0 −2
0 3 0
0 0 3

. Find P and D that diagonalize A.
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4.4 Diagonalization

Example Continued...
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4.4 Diagonalization

Fact: A is diagonalizable if and only if:
geometric multiplicity=algebraic multiplicity for all eigenvalues of A.

Example: Diagonalize A =

[
4 0
1 4

]
(if possible).

Example: Let A =

[
4 0
1 4

]
. Find the characteristic equation, the algebraic multiplicity of

λ = 4 and the geometric multiplicity of λ = 4. Explain, in terms of algebraic and geometric
multiplicity, why A can’t be diagonalized.

161



4.4 Diagonalization

Fact: Let n be a positive integer. If D is diagonal then Dn is diagonal, with n-th powers
on the diagonal.

Example: Calculate

[
−4 0
0 3

]2
.

Fact: Let n be a positive integer. If P−1AP = D then An = PDnP−1.

Example: Prove the fact above.
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4.4 Diagonalization

Example: P =

1 0 1
0 1 0
0 0 1

 diagonalizes A to produce D =

3 0 0
0 3 0
0 0 4

. Find Ak, where k

is a positive integer.
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4.4 Diagonalization

Example: Application of An and eigenvectors. This example will not be tested.
Consider a company with 1000 machines.
a) Suppose a working machine has a 99% probability of working tomorrow. Suppose a bro-
ken machine has a 50% probability of being broken tomorrow. Write down the probability
matrix, A.

b) Suppose all machines are working today. Write down the initial state vector, v⃗.

c) How many machines will be working or broken tomorrow?

d) How many machines will be working or broken two days from now?

e) How many machines will be working or broken three days from now?

f) How many machines will be working or broken n days from now, where n is a non-negative
integer?

g) What initial state vector v⃗ would have Av⃗ = v⃗? This is called the steady-state vector
because the state after one day is the same as the initial state.
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Chapter 5: Orthogonality
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5.1 Orthogonality

5.1 Orthogonality

Definition: An orthogonal set is a set of two or more vectors such that any two of the
vectors are orthogonal.

Example: Verify that {

12
1

 ,

 1
0
−1

 ,

 1
−1
1

} is an orthogonal set.

Definition: To normalize a vector means to find a unit vector in the same direction.

Example: Normalize u⃗ =

12
1

.

Definition: An orthonormal set is an orthogonal set in which all vectors have length 1.
For example, the following is an orthonormal set:

{ 1√
6

12
1

 , 1√
2

 1
0
−1

 , 1√
3

 1
−1
1

} .
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5.1 Orthogonality

Fact: A set of n nonzero orthogonal vectors in Rn forms a basis for Rn.

Comment: This implies that a set of n nonzero orthonormal vectors in Rn forms a basis
for Rn.

Example: Find an orthonormal basis {u⃗1, u⃗2, u⃗3} for R3 such that:
u⃗1 is parallel to [2, 0, 1] and u⃗2 is parallel to [1, 3,−2].
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5.1 Orthogonality

Fact: Suppose {v⃗1, v⃗2, . . . , v⃗n} is an orthogonal basis for Rn.
For any vector w⃗ in Rn:

w⃗ = projv⃗1w⃗ + projv⃗2w⃗ + . . .+ projv⃗nw⃗

Example: Draw a sketch to show that w⃗ ̸= projv⃗1w⃗ + projv⃗2w⃗ + . . .+ projv⃗nw⃗
if {v⃗1, v⃗2, . . . , v⃗n} is not orthogonal.
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5.1 Orthogonality

Example: B = {

11
4

 ,

 1
−1
0

 ,

 2
2
−1

} is an orthogonal basis for R3. Write w⃗ =

50
9

 as a

linear combination of the basis vectors.
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5.1 Orthogonality

Definition: An orthogonal matrix Q is an n× n matrix whose columns form an
orthonormal set. For example, the following matrix is orthogonal:

Q =

 1√
2

1√
2

0
−1√
2

1√
2

0

0 0 1



Fact: A square matrix Q is orthogonal if and only if QTQ = I.

Example: Verify that QTQ = I for Q =

 1√
2

1√
2

0
−1√
2

1√
2

0

0 0 1

.
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5.1 Orthogonality

Fact: If Q is orthogonal then Q−1 = QT .

Example: Prove the fact above.

Example: Let Q be an orthogonal matrix. Show that Q−1 is orthogonal.
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5.1 Orthogonality

Example: Determine all values of x, y and z so that

[
1
2

y
x z

]
is an orthogonal matrix.
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5.2 Orthogonal Complements and Projections

5.2 Orthogonal Complements and Projections

Throughout Chapter 5, W will represent a subspace of Rn. Rephrased: W is the span of
one or more vectors in Rn.

Definition: The orthogonal complement of W is:
W⊥ = {v⃗ in Rn such that v⃗ · w⃗ = 0 for all w⃗ in W}.
W⊥ is pronounced “W perp”.

Example: Let W = span(

10
0

 ,

11
3

). Find W⊥.
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5.2 Orthogonal Complements and Projections

Recall that the dimension of a subspace W is the number of vectors in a basis for W .

Three Facts about W⊥

For any subspace W of Rn:

1) dimW + dimW⊥ = n

2) W ∩W⊥ = {⃗0}
3) (W⊥)⊥ = W

Example: Let W = span(


1
4
3
2
1

 ,


1
2
3
4
5

). Find the dimension of W and W⊥.
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5.2 Orthogonal Complements and Projections

Example: Let W = {
[
x
y

]
such that 3x+ y = 0}. Find a basis for W and for W⊥.
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5.2 Orthogonal Complements and Projections

Example: Let A =

[
1 0 0 4
0 1 1 6

]
and let W = row(A). Find a basis for W⊥.

Fact: For any matrix A, [row(A)]⊥ = null(A).
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5.2 Orthogonal Complements and Projections

Example: Let A =

1 3
2 4
0 0

 and let W = col(A). Find a basis for W⊥.

Fact: For any matrix A, [col(A)]⊥ = null(AT ).
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5.2 Orthogonal Complements and Projections

Definition: Let W be a subspace of Rn with orthogonal basis {w⃗1, w⃗2, . . . , w⃗k}.
The orthogonal projection of v⃗ onto W is:

projW v⃗ = projw⃗1 v⃗+ projw⃗2 v⃗ + . . .+ projw⃗k
v⃗.

Comment: This formula only applies when the basis for W is orthogonal.

Example: Let W be a plane through the origin in R3. Let v⃗ be a vector in R3 that does
not lie in W . Sketch W, v⃗ and projW v⃗.
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5.2 Orthogonal Complements and Projections

Example: W has orthogonal basis B = {


1
0
0
0

 ,


0
1
−1
0

}.

Find the orthogonal projection of v⃗ =


1
5
−3
7

 onto W .
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5.2 Orthogonal Complements and Projections

Definition: The orthogonal decomposition of v⃗ with respect to W is:

v⃗ = projW v⃗ + perpW v⃗

where projW v⃗ is in W and perpW v⃗ is in W⊥.

Example: Let W be a plane through the origin in R3. Let v⃗ be a vector in R3 that does
not lie in W . Sketch W, v⃗, projW v⃗ and perpW v⃗.
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5.2 Orthogonal Complements and Projections

Example: W has orthogonal basis B = {

 1
0
−1

 ,

 2
−1
2

}.

Find the orthogonal decomposition of v⃗ =

11
5

 with respect to W .
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5.3 The Gram-Schmidt Procedure

5.3 The Gram-Schmidt Procedure

Example: Let W = span(


1
1
1
1

 ,


1
2
4
5

 ,


1
−3
−4
−2

). Find an orthogonal basis for W .
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5.3 The Gram-Schmidt Procedure

Example Continued...

Comment: This procedure is called Gram-Schmidt Orthogonalization.

Example: Modify the basis above to create an orthonormal basis for W .
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5.3 The Gram-Schmidt Procedure

Example: Find an orthogonal basis for R3 containing

11
5

.
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5.3 The Gram-Schmidt Procedure

Example Continued...
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5.3 The Gram-Schmidt Procedure

Definition: Let A be a matrix with linearly independent columns.
The QR Factorization of A is:
A = QR where Q is an orthogonal matrix and R is upper triangular.

Example: Let A = QR for an orthogonal matrix Q. Show that R = QTA.

Fact: Let A = QR for an orthogonal matrix Q.
To find Q: Apply Gram-Schmidt to the columns of A, and normalize.
Then R = QTA.
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5.3 The Gram-Schmidt Procedure

Example: Find Q and R for A =


1 1 0
0 1 1
0 2 1
0 0 3

.
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5.3 The Gram-Schmidt Procedure

Example Continued...
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5.3 The Gram-Schmidt Procedure

Example: Approximating the eigenvalues of A. This example will not be tested.

Consider the following procedure:
Find A = Q0R0.
Let A1 = R0Q0 then find A1 = Q1R1.
Let A2 = R1Q1 then find A2 = Q2R2 etc.
Each matrix Ak has the same eigenvalues as A.
As k → ∞, Ak becomes upper triangular.

Suppose we start with matrix A and produce A4 =

[
1.98 2.52
0.03 7.01

]
.

a) Does A4 have the same eigenvalues as A?

b) Is A4 approximately upper triangular?

c) Estimate the eigenvalues of A.
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5.4 Orthogonal Diagonalization

5.4 Orthogonal Diagonalization

Recall that if Q is orthogonal then Q−1 = QT .

Definition: An n× n matrix A is orthogonally diagonalizable if there exist an
orthogonal matrix Q and a diagonal matrix D so that QTAQ = D.

Fact: Let A be an n× n matrix. The matrix A is orthogonally diagonalizable if and only
if A is symmetric.

Example: Is A orthogonally diagonalizable?

a) A =

[
1 −2
−2 5

]

b) A =

[
3 −4
4 3

]
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5.4 Orthogonal Diagonalization

Example: The matrix A =

5 1 1
1 5 1
1 1 5

 has eigenvalues λ = 4 and λ = 7.

Find Q that orthogonally diagonalizes A.
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5.4 Orthogonal Diagonalization

Example Continued...
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5.4 Orthogonal Diagonalization

We’re going to recap the outer product expansion of AB from Section 3.1.

Example: Find

[
1 2
3 4

] [
5 6
7 8

]
using the outer product expansion.

Example: Find

[
−1 9
2 3

] [
4 3
2 1

]
using the outer product expansion.
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5.4 Orthogonal Diagonalization

Definition: Let A be a symmetric n× n matrix.
Let q⃗1, q⃗2, . . . , q⃗n be orthonormal eigenvectors written as columns.
Let λ1, λ2, . . . , λn be the corresponding eigenvalues.
The spectral decomposition of A is:
A = λ1q⃗1q⃗

T
1 + λ2q⃗2q⃗

T
2 + . . .+ λnq⃗nq⃗

T
n

Example: Find a 3× 3 matrix A with eigenvalues λ = 2 and λ = 3 so that:

E2 = span(

11
1

 ,

 1
−1
0

) and E3 = span(

 1
1
−2

).
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5.4 Orthogonal Diagonalization

Example Continued...
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5.4 Orthogonal Diagonalization

Example: Suppose QTAQ = D. Solve for A then use the outer product expansion to
derive the spectral decomposition.
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Appendix: Other Topics
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7.3 Least Squares Approximation

7.3 Least Squares Approximation

Recall that a system Ax⃗ = b⃗ may be inconsistent.

Definition: Given an approximate solution s⃗, the error vector is b⃗− As⃗
and the error is ||⃗b− As⃗||.

Definition: The least squares solution x⃗∗ is the approximate solution with the mini-
mum error.

Comment: Recall that ||v⃗|| =
√

v21 + v22 + . . .+ v2n. The terminology least squares so-
lution emphasizes that we’re making the length of the error vector as small as possible.

Fact: The least squares solution to a system Ax⃗ = b⃗ is x⃗∗ = (ATA)−1AT b⃗.

Comment: We’ll assume that the columns of A are linearly independent so that (ATA)−1

exists.
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7.3 Least Squares Approximation

Example: The system

1 0
0 1
1 1

[
x1

x2

]
=

12
6

 is inconsistent.

Find the least squares solution x⃗∗.

Example: Calculate the error for x⃗∗ above. What can you say about the error for any
other vector x⃗ ?
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7.3 Least Squares Approximation

Example: Find the best-fit line y = a0 + a1x.
The best-fit line is also called the least squares regression line.
x y
0 4
1 1
2 0
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7.3 Least Squares Approximation

Example: Find the best-fit parabola through:
x y
1 1
2 -2
3 3
4 4
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7.3 Least Squares Approximation

Example: Find the best-fit curve P = Cekt through:
t P
0 5
1 8
3 12
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7.3 Least Squares Approximation

Example Continued...
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7.3 Least Squares Approximation

Recall that Ax⃗ = b⃗ is consistent if and only if b⃗ is in col(A).
This follows from Sections 2.3 and 3.5.

Recall that null(AT )=[col(A)]⊥. We saw this in Section 5.2.

Example: Derive the formula for x⃗∗ by considering an inconsistent system Ax⃗ = b⃗.
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7.3 Least Squares Approximation

Example Continued...
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Complex Numbers

Complex Numbers

Definition: Let i be the imaginary number such that i2 = −1.
If a and b are real numbers then z = a+ bi is a complex number.

Comment: The symbol i is sometimes written j. You may feel free to use either notation.

Example: Let z1 = −2 + 6i and z2 = 4 + 5i. Calculate:

a) −7z1

b) z1 + z2

c) z1 − z2

d) z1z2
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Complex Numbers

Definition: The complex conjugate of z = a+ bi is z = a− bi.

Example: Let z = a+ bi. Show that zz = a2 + b2.

Example: Let z1 = 4 + 9i and z2 = −3 + 5i. Calculate:

a) 1
z1

b) z1
z2
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Complex Numbers

Definition: The length of z = a+ bi is |z| =
√
a2 + b2.

The principal argument of z = a+ bi is the angle θ = tan−1( b
a
) (+π?)

We decide whether to add π or not based on the graph of z.

Example: Let z = −1 + 2i. Graph z then calculate |z| and θ.
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Complex Numbers

Example: Show that z = |z|[cos θ + i sin θ].

Definition: The rectangular form of a complex number is z = a+ bi.
The polar form of a complex number is z = |z|[cos θ + i sin θ].

Example: Express z = −1 + 8i in polar form.
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Complex Numbers

Fact: Multiplication and Division in Polar Form

Let z1 = |z1|[cos θ1 + i sin θ1] and z2 = |z2|[cos θ2 + i sin θ2].

Then z1z2 = |z1| |z2|[cos(θ1 + θ2) + i sin(θ1 + θ2)] and

z1
z2

= |z1|
|z2| [cos(θ1 − θ2) + i sin(θ1 − θ2)].

Comment: When multiplying in polar form: multiply the lengths and add the angles.
When dividing in polar form: divide the lengths and subtract the angles.

Example: Let z1 = 9 + 3
√
3i and z2 = 4

√
3− 12i.

Find z1
z2

by converting to polar form.
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Complex Numbers

Example Continued...
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Complex Numbers

Fact: De Moivre’s Formula
Let n be a positive integer.
If z = |z|[cos θ + i sin θ] then zn = |z|n[cos(nθ) + i sin(nθ)].

Example: Find (1− i)21.
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Complex Numbers

Example: Calculate i0, i1, i2, i3, i4 and i5.

Fact: Let n be a non-negative integer. Then:
i4n = 1, i4n+1 = i, i4n+2 = −1 and i4n+3 = −i.

Example: Simplify i271.

Example: Recall that:
sinx = x− x3

3!
+ x5

5!
− . . .

cosx = 1− x2

2!
+ x4

4!
− . . .

ex = 1 + x+ x2

2!
+ x3

3!
+ . . .

Show that eiθ = cos θ + i sin θ.
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Complex Numbers

Example: Derive the most beautiful equation in mathematics by subbing θ = π into
the equation eiθ = cos θ + i sin θ.
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Complex Numbers

Definition: The rectangular form of a complex number is z = a+ bi.
The polar form of a complex number is z = |z|[cos θ + i sin θ].
The exponential form of a complex number is z = |z|eiθ.

Now we’ll look at complex eigenvalues and eigenvectors.

Example: Let A =

[
3 −13
5 1

]
.

a) Find the eigenvalues.

215



Complex Numbers

b) Find a basis for one of the eigenspaces.
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Complex Numbers

c) Find a basis for the other eigenspace.
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Complex Numbers

Fact: A complex number has 2 square roots, 3 cube roots, and n different n-th roots for
integers n ≥ 2.

Fact: z = |z|[cos θ + i sin θ] has n different n-th roots for integers n ≥ 2:

z
1
n = |z| 1n [cos θ+2πα

n + i sin θ+2πα
n ] for α = 0, 1, . . . , n− 1.

Example: Find all the cube roots of −1.
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Complex Numbers

Example: Solve x2 − 2i = 0.
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