Math 251 X01 \& X02
Assignment

Total: 25 marks

Name: $\qquad$
Due: At the beginning of class, Monday April 8th
Covers Sections: 4.3-4.4 and 5.1-5.3
INSTRUCTIONS

* Submit your work on this paper.
* If you are away on the duedate then submit via the D2L Dropbox.
* You may discuss with others but your write-up must be your own work.
* Show all your work for full marks.

1. [3 marks] $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal basis for $\mathbb{R}^{3}$, where:
$\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right]$ and $\mathbf{v}_{3}=\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]$.
Write $\mathbf{w}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ as a linear combination of the basis vectors.
2. [7 marks] Find an orthogonal basis for $\operatorname{span}\left(\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-3 \\ 5 \\ 0 \\ 2\end{array}\right]\right)$.
3. $[5$ marks $]$ Let $W=\operatorname{span}\left(\left[\begin{array}{c}1 \\ 0 \\ -8 \\ 121 \\ -43\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 9 \\ -140 \\ 22\end{array}\right],\left[\begin{array}{c}3 \\ 0 \\ -23 \\ 347 \\ -126\end{array}\right]\right)$.

Find a basis for $W^{\perp}$.
4. [4 marks] $A=\left[\begin{array}{ccc}5 & 2 & 0 \\ -1 & 3 & 1 \\ 0 & 1 & 5\end{array}\right]$ has characteristic equation $(\lambda-4)^{2}(\lambda-5)=0$.
a) Find the algebraic multiplicity of $\lambda=4$.
b) Find the geometric multiplicity of $\lambda=4$.
c) Is A diagonalizable? Explain.
5. [6 marks] The matrix $A$ has eigenvalue 2 corresponding to the eigenvector $\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and eigenvalue 3 corresponding to the eigenvector $\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
Find the top-left entry of $A^{n}$.

